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11.3 Introduction

 Ordered rooted trees are often used to store information.

 We need procedures for visiting each vertex of an ordered rooted tree to 

access data. 

 We will describe several important algorithms for visiting all the vertices of 

an ordered rooted tree. 

 Ordered rooted trees can also be used to represent various types of 

expressions, such as arithmetic expressions involving numbers, variables, and 

operations.
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Universal Address Systems

 Procedures for traversing all vertices of an ordered rooted tree rely on the 

orderings of children.

 In ordered rooted trees, the children of an internal vertex are shown from 

left to right in the drawings representing these directed graphs.

 We will describe one way we can totally order the vertices of an ordered 

rooted tree. 

 To produce this ordering, we must first label all the vertices. We do this 

recursively:

 1. Label the root with the integer 0. Then label its k children (at level 1) from 

left to right with 1, 2, 3, . . . , k.

 2. For each vertex v at level n with label A, label its kv children, as they are 

drawn from left to right, with A.1,A.2, . . . , A.kv.
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Universal Address Systems (cont.)

 Following this procedure, a vertex v at level n, for n ≥ 1, is labeled x1.x2. . . . 

.xn, where the unique path from the root to v goes through the x1st vertex at 

level 1, the x2nd vertex at level 2, and so on. 

 This labeling is called the universal address system of the ordered rooted 

tree.

 We can totally order the vertices using the lexicographic ordering of their 

labels in the universal address system. 

 The vertex labeled x1.x2. . . . .xn is less than the vertex labeled y1.y2. . . . 

.ym if there is an i, 0 ≤ i ≤ n, with x1 = y1, x2 = y2, . . . , xi−1 = yi−1, and xi < 

yi; or if n < m and xi = yi for i = 1, 2, . . . , n.
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Example 1
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Figure 1: The Universal Address System of an Ordered Rooted Tree



Lexicographic Ordering of the Labeling

 We display the labelings of the universal address system next to the vertices 

in the ordered rooted tree shown in Figure 1. The lexicographic ordering of 

the labelings is

 0 < 1 < 1.1 < 1.2 < 1.3 < 2 < 3 < 3.1 < 3.1.1 < 3.1.2 < 3.1.2.1 < 3.1.2.2

 < 3.1.2.3 < 3.1.2.4 < 3.1.3 < 3.2 < 4 < 4.1 < 5 < 5.1 < 5.1.1 < 5.2 < 5.3
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Traversal Algorithms

 Procedures for systematically visiting every vertex of an ordered rooted tree 

are called traversal algorithms. 

 We will describe three of the most commonly used such algorithms:

 preorder traversal, inorder traversal, and postorder traversal.

 Each of these algorithms can be defined recursively.
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Definition 1
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Preorder Traversal

 Preorder traversal of an ordered rooted tree gives the same ordering of the 

vertices as the ordering obtained using a universal address system. 

 Figure 2 indicates how a preorder traversal is carried out.

 Example 2 illustrates preorder traversal.
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Illustration of Preorder Traversal
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Figure 2: Preorder traversal



Example 2

 In which order does a preorder traversal visit the vertices in the ordered 

rooted tree T shown in Figure 3?
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Figure 3: The Ordered Rooted Tree T 



Solution

 The steps of the preorder traversal of T are shown in Figure 4. 

 We traverse T in preorder by first listing the root a, followed by the preorder 

list of the subtree with root b, the preorder list of the subtree with root c 

(which is just c) and the preorder list of the subtree with root d.

 Consequently, the preorder traversal of T is 

 a, b, e, j , k, n, o, p, f , c, d, g, l, m, h, i.
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Figure 4 The Preorder Traversal of T .



Definition 2
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Inorder Traversal

 Figure 5 indicates how inorder traversal is carried out. 

 Example 3 illustrates how inorder traversal is carried out for a particular tree.

by Sibel T. Özyer, Spring 2019

Figure 5 Inorder Traversal



Example 3

 In which order does an inorder traversal visit the vertices of the ordered 

rooted tree T in Figure 3?
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Figure 3: The Ordered Rooted Tree T 
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Figure 6 The Inorder Traversal of T .



Solution

 The steps of the inorder traversal of the ordered rooted tree T are shown in 

Figure 6.

 The inorder traversal begins with an inorder traversal of the subtree with root 

b, the root a, the inorder listing of the subtree with root c, which is just c, 

and the inorder listing of the subtree with root d.

 Consequently, the inorder listing of the ordered rooted tree is 

 j , e, n, k, o, p, b, f , a, c, l, g, m, d, h, i.
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Definition 3
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Postorder Traversal

 Figure 7 illustrates how postorder traversal is done. Example 4 illustrates how 

postorder traversal works.
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Figure 7 Postorder Traversal.



Example 4

 In which order does a postorder traversal visit the vertices of the ordered 

rooted tree T shown in Figure 3?
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Figure 3: The Ordered Rooted Tree T 



Solution

 The steps of the postorder traversal of the ordered rooted tree T are shown in 

Figure 8.

 The postorder traversal begins with the postorder traversal of the subtree 

with root b, the postorder traversal of the subtree with root c, which is just c, 

the postorder traversal of the subtree with root d, followed by the root a.

 Therefore, the postorder traversal of T is 

 j , n, o, p, k, e, f , b, c, l, m, g, h, i, d, a.
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Infix, Prefix, and Postfix Notations

 We can represent complicated expressions, such as compound propositions, 

combinations of sets, and arithmetic expressions using ordered rooted trees. 

 For instance, an arithmetic expression involving the operators + (addition), − 

(subtraction), ∗ (multiplication), / (division), and ↑ (exponentiation). 

 We will use parentheses to indicate the order of the operations.

 An ordered rooted tree can be used to represent such expressions, where the 

internal vertices represent operations, and the leaves represent the variables 

or numbers.

 Each operation operates on its left and right subtrees.
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Example 5

 What is the ordered rooted tree that represents the expression 

((x + y)↑2) + ((x − 4)/3)?
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Solution
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Figure 9 A Binary Tree Representing ((x + y) ↑ 2) + ((x − 4)/3).



Inorder traversals of the binary trees

 An inorder traversal of the binary tree representing an expression produces 

the original expression with the elements and operations in the same order as 

they originally occurred, except for unary operations, which instead 

immediately follow their operands. 

 For instance, inorder traversals of the binary trees in Figure 10, which 

represent the expressions (x + y)/(x + 3), (x + (y/x)) + 3, and x + (y/(x + 3)), 

all lead to the infix expression x + y/x + 3. 

 To make such expressions unambiguous it is necessary to include parentheses 

in the inorder traversal whenever we encounter an operation. 

 The fully parenthesized expression obtained in this way is said to be in infix 

form.

 We obtain the prefix form of an expression when we traverse its rooted tree 

in preorder.
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Infix and Prefix
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Figure 10 Rooted Trees Representing (x + y)/(x + 3), (x + (y/x)) + 3, and x + (y/(x + 3)).



Example 6

 What is the prefix form for ((x + y) ↑ 2) + ((x − 4)/3)?
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Solution

 We obtain the prefix form for this expression by traversing the binary tree 

that represents it in preorder, shown in Figure 9. This produces 

 + ↑ + x y 2 / − x 4 3.

 In the prefix form of an expression, a binary operator, such as +, precedes its 

two operands. Hence, we can evaluate an expression in prefix form by 

working from right to left. When we encounter an operator, we perform the 

corresponding operation with the two operands immediately to the right of 

this operand. Also, whenever an operation is performed, we consider the 

result a new operand.
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Solution (cont.)
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Figure 9 A Binary Tree Representing ((x + y) ↑ 2) + ((x − 4)/3).



Example 7

 What is the value of the prefix expression + − ∗ 2 3 5/↑ 2 3 4?
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Solution

 The steps used to evaluate this expression by working right to left, and 

performing operations using the operands on the right, are shown in Figure 

11. The value of this expression is 3.

 We obtain the postfix form of an expression by traversing its binary tree in 

postorder.
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Figure 11 Evaluating a Prefix Expression.



Example 8

 What is the postfix form of the expression ((x + y) ↑ 2) + ((x − 4)/3)?
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Solution

 The postfix form of the expression is obtained by carrying out a postorder

traversal of the binary tree for this expression, shown in Figure 9. 

 This produces the postfix expression: 

 x y + 2 ↑ x 4 − 3 / +.

 In the postfix form of an expression, a binary operator follows its two 

operands. So, to evaluate an expression from its postfix form, work from left 

to right, carrying out operations whenever an operator follows two operands. 

After an operation is carried out, the result of this operation becomes a new 

operand.
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Example 9

 What is the value of the postfix expression 7 2 3 ∗ − 4 ↑ 9 3/+?
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Solution

 The steps used to evaluate this expression by starting at the left and carrying 

out operations when two operands are followed by an operator are shown in 

Figure 12. The value of this expression is 4.

by Sibel T. Özyer, Spring 2019

Figure 12 Evaluating a Postfix Expression.



Representing Compound Propositions

 Rooted trees can be used to represent other types of expressions, such as 

those representing compound propositions and combinations of sets.

 In these examples unary operators, such as the negation of a proposition, 

occur. 

 To represent such operators and their operands, a vertex representing the 

operator and a child of this vertex representing the operand are used.
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Example 10

 Find the ordered rooted tree representing the compound proposition 

(￢(p ∧ q)) ↔ (￢p ∨￢q).

 Then use this rooted tree to find the prefix, postfix, and infix forms of this 

expression.
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Solution

 The rooted tree for this compound proposition is constructed from the bottom 

up. First, subtrees for ￢p and ￢q are formed (where ￢ is considered a unary 

operator). 

 Also, a subtree for p ∧ q is formed. Then subtrees for ￢(p ∧ q) and (￢p) ∨
(￢q) are constructed. 

 Finally, these two subtrees are used to form the final rooted tree. The steps 

of this procedure are shown in Figure 13.

 The prefix, postfix, and infix forms of this expression are found by traversing 

this rooted tree in preorder, postorder, and inorder (including parentheses), 

respectively. These traversals give

 ↔￢∧pq ∨￢p￢q,pq ∧￢p￢q￢ ∨↔, and (￢(p ∧ q)) ↔ ((￢p) ∨ (￢q)), 

respectively.
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Solutions (cont.)

 Because prefix and postfix expressions are unambiguous and because they can 

be evaluated easily without scanning back and forth, they are used 

extensively in computer science. 

 Such expressions are especially useful in the construction of compilers.
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Solution (cont.)
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Figure 13 Constructing the Rooted Tree for a Compound Proposition.


