
Ceng 124

Discrete Structures
2018-2019 Spring Semester

by Sibel T. Özyer, Spring 2019

Topics

11.3 Tree Traversal

Introduction

Universal Address Systems

Traversal Algorithms

Preorder

 Indorder

Postorder

Infix, Prefix, Postfix Notations

by Sibel T. Özyer, Spring 2019

11.3 Introduction

 Ordered rooted trees are often used to store information.

 We need procedures for visiting each vertex of an ordered rooted tree to

access data.

 We will describe several important algorithms for visiting all the vertices of

an ordered rooted tree.

 Ordered rooted trees can also be used to represent various types of

expressions, such as arithmetic expressions involving numbers, variables, and

operations.

by Sibel T. Özyer, Spring 2019

Universal Address Systems

 Procedures for traversing all vertices of an ordered rooted tree rely on the

orderings of children.

 In ordered rooted trees, the children of an internal vertex are shown from

left to right in the drawings representing these directed graphs.

 We will describe one way we can totally order the vertices of an ordered

rooted tree.

 To produce this ordering, we must first label all the vertices. We do this

recursively:

 1. Label the root with the integer 0. Then label its k children (at level 1) from

left to right with 1, 2, 3, . . . , k.

 2. For each vertex v at level n with label A, label its kv children, as they are

drawn from left to right, with A.1,A.2, . . . , A.kv.

by Sibel T. Özyer, Spring 2019

Universal Address Systems (cont.)

 Following this procedure, a vertex v at level n, for n ≥ 1, is labeled x1.x2. . . .

.xn, where the unique path from the root to v goes through the x1st vertex at

level 1, the x2nd vertex at level 2, and so on.

 This labeling is called the universal address system of the ordered rooted

tree.

 We can totally order the vertices using the lexicographic ordering of their

labels in the universal address system.

 The vertex labeled x1.x2.xn is less than the vertex labeled y1.y2. . . .

.ym if there is an i, 0 ≤ i ≤ n, with x1 = y1, x2 = y2, . . . , xi−1 = yi−1, and xi <

yi; or if n < m and xi = yi for i = 1, 2, . . . , n.

by Sibel T. Özyer, Spring 2019

Example 1

by Sibel T. Özyer, Spring 2019

Figure 1: The Universal Address System of an Ordered Rooted Tree

Lexicographic Ordering of the Labeling

 We display the labelings of the universal address system next to the vertices

in the ordered rooted tree shown in Figure 1. The lexicographic ordering of

the labelings is

 0 < 1 < 1.1 < 1.2 < 1.3 < 2 < 3 < 3.1 < 3.1.1 < 3.1.2 < 3.1.2.1 < 3.1.2.2

 < 3.1.2.3 < 3.1.2.4 < 3.1.3 < 3.2 < 4 < 4.1 < 5 < 5.1 < 5.1.1 < 5.2 < 5.3

by Sibel T. Özyer, Spring 2019

Traversal Algorithms

 Procedures for systematically visiting every vertex of an ordered rooted tree

are called traversal algorithms.

 We will describe three of the most commonly used such algorithms:

 preorder traversal, inorder traversal, and postorder traversal.

 Each of these algorithms can be defined recursively.

by Sibel T. Özyer, Spring 2019

Definition 1

by Sibel T. Özyer, Spring 2019

Preorder Traversal

 Preorder traversal of an ordered rooted tree gives the same ordering of the

vertices as the ordering obtained using a universal address system.

 Figure 2 indicates how a preorder traversal is carried out.

 Example 2 illustrates preorder traversal.

by Sibel T. Özyer, Spring 2019

Illustration of Preorder Traversal

by Sibel T. Özyer, Spring 2019

Figure 2: Preorder traversal

Example 2

 In which order does a preorder traversal visit the vertices in the ordered

rooted tree T shown in Figure 3?

by Sibel T. Özyer, Spring 2019

Figure 3: The Ordered Rooted Tree T

Solution

 The steps of the preorder traversal of T are shown in Figure 4.

 We traverse T in preorder by first listing the root a, followed by the preorder

list of the subtree with root b, the preorder list of the subtree with root c

(which is just c) and the preorder list of the subtree with root d.

 Consequently, the preorder traversal of T is

 a, b, e, j , k, n, o, p, f , c, d, g, l, m, h, i.

by Sibel T. Özyer, Spring 2019

by Sibel T. Özyer, Spring 2019

Figure 4 The Preorder Traversal of T .

Definition 2

by Sibel T. Özyer, Spring 2019

Inorder Traversal

 Figure 5 indicates how inorder traversal is carried out.

 Example 3 illustrates how inorder traversal is carried out for a particular tree.

by Sibel T. Özyer, Spring 2019

Figure 5 Inorder Traversal

Example 3

 In which order does an inorder traversal visit the vertices of the ordered

rooted tree T in Figure 3?

by Sibel T. Özyer, Spring 2019

Figure 3: The Ordered Rooted Tree T

by Sibel T. Özyer, Spring 2019

Figure 6 The Inorder Traversal of T .

Solution

 The steps of the inorder traversal of the ordered rooted tree T are shown in

Figure 6.

 The inorder traversal begins with an inorder traversal of the subtree with root

b, the root a, the inorder listing of the subtree with root c, which is just c,

and the inorder listing of the subtree with root d.

 Consequently, the inorder listing of the ordered rooted tree is

 j , e, n, k, o, p, b, f , a, c, l, g, m, d, h, i.

by Sibel T. Özyer, Spring 2019

Definition 3

by Sibel T. Özyer, Spring 2019

Postorder Traversal

 Figure 7 illustrates how postorder traversal is done. Example 4 illustrates how

postorder traversal works.

by Sibel T. Özyer, Spring 2019

Figure 7 Postorder Traversal.

Example 4

 In which order does a postorder traversal visit the vertices of the ordered

rooted tree T shown in Figure 3?

by Sibel T. Özyer, Spring 2019

Figure 3: The Ordered Rooted Tree T

Solution

 The steps of the postorder traversal of the ordered rooted tree T are shown in

Figure 8.

 The postorder traversal begins with the postorder traversal of the subtree

with root b, the postorder traversal of the subtree with root c, which is just c,

the postorder traversal of the subtree with root d, followed by the root a.

 Therefore, the postorder traversal of T is

 j , n, o, p, k, e, f , b, c, l, m, g, h, i, d, a.

by Sibel T. Özyer, Spring 2019

by Sibel T. Özyer, Spring 2019 Figure 8 The Inorder Traversal of T .

Infix, Prefix, and Postfix Notations

 We can represent complicated expressions, such as compound propositions,

combinations of sets, and arithmetic expressions using ordered rooted trees.

 For instance, an arithmetic expression involving the operators + (addition), −

(subtraction), ∗ (multiplication), / (division), and ↑ (exponentiation).

 We will use parentheses to indicate the order of the operations.

 An ordered rooted tree can be used to represent such expressions, where the

internal vertices represent operations, and the leaves represent the variables

or numbers.

 Each operation operates on its left and right subtrees.

by Sibel T. Özyer, Spring 2019

Example 5

 What is the ordered rooted tree that represents the expression

((x + y)↑2) + ((x − 4)/3)?

by Sibel T. Özyer, Spring 2019

Solution

by Sibel T. Özyer, Spring 2019

Figure 9 A Binary Tree Representing ((x + y) ↑ 2) + ((x − 4)/3).

Inorder traversals of the binary trees

 An inorder traversal of the binary tree representing an expression produces

the original expression with the elements and operations in the same order as

they originally occurred, except for unary operations, which instead

immediately follow their operands.

 For instance, inorder traversals of the binary trees in Figure 10, which

represent the expressions (x + y)/(x + 3), (x + (y/x)) + 3, and x + (y/(x + 3)),

all lead to the infix expression x + y/x + 3.

 To make such expressions unambiguous it is necessary to include parentheses

in the inorder traversal whenever we encounter an operation.

 The fully parenthesized expression obtained in this way is said to be in infix

form.

 We obtain the prefix form of an expression when we traverse its rooted tree

in preorder.

by Sibel T. Özyer, Spring 2019

Infix and Prefix

by Sibel T. Özyer, Spring 2019

Figure 10 Rooted Trees Representing (x + y)/(x + 3), (x + (y/x)) + 3, and x + (y/(x + 3)).

Example 6

 What is the prefix form for ((x + y) ↑ 2) + ((x − 4)/3)?

by Sibel T. Özyer, Spring 2019

Solution

 We obtain the prefix form for this expression by traversing the binary tree

that represents it in preorder, shown in Figure 9. This produces

 + ↑ + x y 2 / − x 4 3.

 In the prefix form of an expression, a binary operator, such as +, precedes its

two operands. Hence, we can evaluate an expression in prefix form by

working from right to left. When we encounter an operator, we perform the

corresponding operation with the two operands immediately to the right of

this operand. Also, whenever an operation is performed, we consider the

result a new operand.

by Sibel T. Özyer, Spring 2019

Solution (cont.)

by Sibel T. Özyer, Spring 2019

Figure 9 A Binary Tree Representing ((x + y) ↑ 2) + ((x − 4)/3).

Example 7

 What is the value of the prefix expression + − ∗ 2 3 5/↑ 2 3 4?

by Sibel T. Özyer, Spring 2019

Solution

 The steps used to evaluate this expression by working right to left, and

performing operations using the operands on the right, are shown in Figure

11. The value of this expression is 3.

 We obtain the postfix form of an expression by traversing its binary tree in

postorder.

by Sibel T. Özyer, Spring 2019
Figure 11 Evaluating a Prefix Expression.

Example 8

 What is the postfix form of the expression ((x + y) ↑ 2) + ((x − 4)/3)?

by Sibel T. Özyer, Spring 2019

Solution

 The postfix form of the expression is obtained by carrying out a postorder

traversal of the binary tree for this expression, shown in Figure 9.

 This produces the postfix expression:

 x y + 2 ↑ x 4 − 3 / +.

 In the postfix form of an expression, a binary operator follows its two

operands. So, to evaluate an expression from its postfix form, work from left

to right, carrying out operations whenever an operator follows two operands.

After an operation is carried out, the result of this operation becomes a new

operand.

by Sibel T. Özyer, Spring 2019

Example 9

 What is the value of the postfix expression 7 2 3 ∗ − 4 ↑ 9 3/+?

by Sibel T. Özyer, Spring 2019

Solution

 The steps used to evaluate this expression by starting at the left and carrying

out operations when two operands are followed by an operator are shown in

Figure 12. The value of this expression is 4.

by Sibel T. Özyer, Spring 2019

Figure 12 Evaluating a Postfix Expression.

Representing Compound Propositions

 Rooted trees can be used to represent other types of expressions, such as

those representing compound propositions and combinations of sets.

 In these examples unary operators, such as the negation of a proposition,

occur.

 To represent such operators and their operands, a vertex representing the

operator and a child of this vertex representing the operand are used.

by Sibel T. Özyer, Spring 2019

Example 10

 Find the ordered rooted tree representing the compound proposition

(￢(p ∧ q)) ↔ (￢p ∨￢q).

 Then use this rooted tree to find the prefix, postfix, and infix forms of this

expression.

by Sibel T. Özyer, Spring 2019

Solution

 The rooted tree for this compound proposition is constructed from the bottom

up. First, subtrees for ￢p and ￢q are formed (where ￢ is considered a unary

operator).

 Also, a subtree for p ∧ q is formed. Then subtrees for ￢(p ∧ q) and (￢p) ∨
(￢q) are constructed.

 Finally, these two subtrees are used to form the final rooted tree. The steps

of this procedure are shown in Figure 13.

 The prefix, postfix, and infix forms of this expression are found by traversing

this rooted tree in preorder, postorder, and inorder (including parentheses),

respectively. These traversals give

 ↔￢∧pq ∨￢p￢q,pq ∧￢p￢q￢ ∨↔, and (￢(p ∧ q)) ↔ ((￢p) ∨ (￢q)),

respectively.

by Sibel T. Özyer, Spring 2019

Solutions (cont.)

 Because prefix and postfix expressions are unambiguous and because they can

be evaluated easily without scanning back and forth, they are used

extensively in computer science.

 Such expressions are especially useful in the construction of compilers.

by Sibel T. Özyer, Spring 2019

Solution (cont.)

by Sibel T. Özyer, Spring 2019

Figure 13 Constructing the Rooted Tree for a Compound Proposition.

