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12.1 Boolean Functions 

Introduction

 Boolean algebra provides the operations and the rules for working with the 

set {0, 1}.

 Electronic and optical switches can be studied using this set and the rules of 

Boolean algebra. 

 The three operations in Boolean algebra that we will use most are 

complementation, the Boolean sum, and the Boolean product.

 The complement of an element, denoted with a bar, is defined by

and                                                                                                    
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Introduction (cont.)

 The Boolean sum, denoted by + or by OR, has the following values:

1 + 1 = 1, 1 + 0 = 1, 0 + 1 = 1, 0 + 0 = 0.

 The Boolean product, denoted by ・ or by AND, has the following values:

1 ・ 1 = 1, 1 ・ 0 = 0, 0 ・ 1 = 0, 0 ・ 0 = 0.
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Example1

 Find the value of 

 Solution:
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Logical Equivalence

 The complement, Boolean sum, and Boolean product correspond to the logical 

operators, ￢,∨, and ∧, respectively, where 0 corresponds to F (false) and 1 

corresponds to T (true). 

 Equalities in Boolean algebra can be directly translated into equivalences of 

compound propositions.

 Conversely, equivalences of compound propositions can be translated into 

equalities in Boolean algebra.
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Example2

 Translate the equality found in Example 1, into a logical 

equivalence.

 Solution: We obtain a logical equivalence when we translate each 1 into a T, 

each 0 into an F, each Boolean sum into a disjunction, each Boolean product 

into a conjunction, and each complementation into a negation.

 We obtain:
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Example3

 Translate the logical equivalence

into an identity in Boolean algebra.

 Solution: We obtain an identity in Boolean algebra when we translate each T 

into a 1, each F into a 0, each disjunction into a Boolean sum, each 

conjunction into a Boolean product, and each negation into a 

complementation.

 We obtain: 
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Boolean Expressions and Boolean 

Functions

 Find the values of the Boolean function represented by 

F(x, y, z) =

Solution: The values of this function are displayed in Table.
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Boolean Identities
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Example4

 Translate the distributive law

into a logical equivalence.

 Solution: change the Boolean variables x, y, and z into the propositional 

variables p, q, and r.

 Next, we change each Boolean sum into a disjunction and each Boolean 

product into a conjunction.
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12.2 Representing Boolean Functions

 Two important problems of Boolean algebra will be studied in this section.

 The first problem is: Given the values of a Boolean function, how can a 

Boolean expression that represents this function be found?

 The second problem is: Is there a smaller set of operators that can be used to 

represent all Boolean functions?
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Sum-of-Product Expansions

 Question: Find Boolean expressions that represent the functions F(x, y, z) and

G(x, y, z), which are given in Table 1.

 Solution: F is , has the value 1 if and only if x = y = z = 1, which holds if

and only if x = z = 1 and y = 0.

 The Boolean sum of these two products, represents G, because it 

has the value 1 if and only if x = y = 1 and z = 0, or x = z = 0 and y = 1.
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Example

 Find the sum-of-products expansion for the function F (x, y, z) =

 Solution: We will find the sum-of-products expansion of F(x, y, z) in two ways. 

First, we will use Boolean identities to expand the product and simplify. We 

find that
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Solution (cont.)

 Second, we can construct the sum-of-products expansion by determining the 

values of F for all possible values of the variables x, y, and z. These values are 

found in Table 2.
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Solution (cont.)

 It is also possible to find a Boolean expression that represents a Boolean 

function by taking a Boolean product of Boolean sums.

 The resulting expansion is called the conjunctive normal form or product-of-

sums expansion of the function.
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