Ceng 124 Discrete Structures

2018-2019 Spring Semester

by Sibel T. Özyer, Spring 2019

Topics

- ► 12 Boolean Algebra
- ► 12.1 Boolean Functions
- ► 12.2 Representing Boolean Functions

12.1 Boolean Functions Introduction

- Boolean algebra provides the operations and the rules for working with the set {0, 1}.
- Electronic and optical switches can be studied using this set and the rules of Boolean algebra.
- The three operations in Boolean algebra that we will use most are complementation, the Boolean sum, and the Boolean product.
- The complement of an element, denoted with a bar, is defined by $\overline{0} = 1$ and $\overline{1} = 0$.

Introduction (cont.)

▶ The Boolean sum, denoted by + or by *OR*, has the following values:

1 + 1 = 1, 1 + 0 = 1, 0 + 1 = 1, 0 + 0 = 0.

The Boolean product, denoted by • or by AND, has the following values:

 $1 \cdot 1 = 1,$ $1 \cdot 0 = 0,$ $0 \cdot 1 = 0,$ $0 \cdot 0 = 0.$

Find the value of $1 \cdot 0 + \overline{(0+1)}$.

Solution: $1 \cdot 0 + \overline{(0+1)} = 0 + \overline{1}$ = 0 + 0 = 0.

Logical Equivalence

- ► The complement, Boolean sum, and Boolean product correspond to the logical operators, ¬,∨, and ∧, respectively, where 0 corresponds to F (false) and 1 corresponds to T (true).
- Equalities in Boolean algebra can be directly translated into equivalences of compound propositions.
- Conversely, equivalences of compound propositions can be translated into equalities in Boolean algebra.

- Translate $1 \cdot 0 + \overline{(0+1)} = 0$, the equality found in Example 1, into a logical equivalence.
- Solution: We obtain a logical equivalence when we translate each 1 into a T, each 0 into an F, each Boolean sum into a disjunction, each Boolean product into a conjunction, and each complementation into a negation.

We obtain:

 $(\mathbf{T} \wedge \mathbf{F}) \vee \neg (\mathbf{T} \vee \mathbf{F}) \equiv \mathbf{F}.$

For Translate the logical equivalence $(T \land T) \lor \neg F \equiv T$

into an identity in Boolean algebra.

- Solution: We obtain an identity in Boolean algebra when we translate each T into a 1, each F into a 0, each disjunction into a Boolean sum, each conjunction into a Boolean product, and each negation into a complementation.
- We obtain:

$$(1\cdot 1) + \overline{0} = 1.$$

Boolean Expressions and Boolean Functions

Find the values of the Boolean function represented by $F(x, y, z) = xy + \overline{z}$.

Solution: The values of this function are displayed in Table.

x	у	z	xy	z	$F(x, y, z) = xy + \overline{z}$
1	1	1	1	0	1
1	1	0	1	1	1
1	0	1	0	0	0
1	0	0	0	1	1
0	1	1	0	0	0
0	1	0	0	1	1
0	0	1	0	0	0
0	0	0	0	1	1

by Sibel T. Özyer, Spring 2019

Boolean Identities

Identity	Name
$\overline{\overline{x}} = x$	Law of the double complement
$ \begin{array}{l} x + x = x \\ x \cdot x = x \end{array} $	Idempotent laws
$\begin{aligned} x + 0 &= x \\ x \cdot 1 &= x \end{aligned}$	Identity laws
$\begin{aligned} x + 1 &= 1 \\ x \cdot 0 &= 0 \end{aligned}$	Domination laws
$\begin{aligned} x + y &= y + x \\ xy &= yx \end{aligned}$	Commutative laws
x + (y + z) = (x + y) + z $x(yz) = (xy)z$	Associative laws
x + yz = (x + y)(x + z) $x(y + z) = xy + xz$	Distributive laws
$\overline{(xy)} = \overline{x} + \overline{y}$ $\overline{(x+y)} = \overline{x} \ \overline{y}$	De Morgan's laws
$\begin{aligned} x + xy &= x \\ x(x + y) &= x \end{aligned}$	Absorption laws
$x + \overline{x} = 1$	Unit property
$x\overline{x} = 0$	Zero property

by Sibel T. Özyer, Spring 2019

Franslate the distributive law x + yz = (x + y)(x + z)

into a logical equivalence.

- Solution: change the Boolean variables x, y, and z into the propositional variables p, q, and r.
- Next, we change each Boolean sum into a disjunction and each Boolean product into a conjunction.

 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r).$

12.2 Representing Boolean Functions

- Two important problems of Boolean algebra will be studied in this section.
- The first problem is: Given the values of a Boolean function, how can a Boolean expression that represents this function be found?
- The second problem is: Is there a smaller set of operators that can be used to represent all Boolean functions?

Sum-of-Product Expansions

• Question: Find Boolean expressions that represent the functions F(x, y, z) and G(x, y, z), which are given in Table 1. TABLE 1

TABLE 1					
x	y	z	F	G	
1	1	1	0	0	
1	1	0	0	1	
1	0	1	1	0	
1	0	0	0	0	
0	1	1	0	0	
0	1	0	0	1	
0	0	1	0	0	
0	0	0	0	0	

- Solution: F is, $x\overline{y}z$, has the value 1 if and only if x = y = z = 1, which holds if and only if x = z = 1 and y = 0.
- The Boolean sum of these two products, $xy\overline{z} + \overline{x}y\overline{z}$, represents G, because it has the value 1 if and only if x = y = 1 and z = 0, or x = z = 0 and y = 1.

- Find the sum-of-products expansion for the function $F(x, y, z) = (x + y)\overline{z}$.
- Solution: We will find the sum-of-products expansion of F(x, y, z) in two ways. First, we will use Boolean identities to expand the product and simplify. We find that

$F(x, y, z) = (x + y)\overline{z}$				
$= x\overline{z} + y\overline{z}$	Distributive law			
$= x1\overline{z} + 1y\overline{z}$	Identity law			
$= x(y+\overline{y})\overline{z} + (x+\overline{x})y\overline{z}$	Unit property			
$= xy\overline{z} + x\overline{y}\overline{z} + xy\overline{z} + \overline{x}y\overline{z}$	Distributive law			
$= xy\overline{z} + x\overline{y}\overline{z} + \overline{x}y\overline{z}.$	Idempotent law			

Solution (cont.)

Second, we can construct the sum-of-products expansion by determining the values of *F* for all possible values of the variables *x*, *y*, and *z*. These values are found in Table 2.

TABLE 2						
x	у	z	x + y	z	$(x + y)\overline{z}$	
1	1	1	1	0	0	
1	1	0	1	1	1	
1	0	1	1	0	0	
1	0	0	1	1	1	
0	1	1	1	0	0	
0	1	0	1	1	1	
0	0	1	0	0	0	
0	0	0	0	1	0	

$$F(x, y, z) = xy\overline{z} + x\overline{y}\overline{z} + \overline{x}y\overline{z}.$$

Solution (cont.)

- It is also possible to find a Boolean expression that represents a Boolean function by taking a Boolean product of Boolean sums.
- The resulting expansion is called the conjunctive normal form or product-ofsums expansion of the function.