Ceng 124 Discrete Structures
 2018-2019 Spring Semester

Topics

-12 Boolean Algebra

- 12.1 Boolean Functions
- 12.2 Representing Boolean Functions

12.1 Boolean Functions
 Introduction

- Boolean algebra provides the operations and the rules for working with the set $\{0,1\}$.
- Electronic and optical switches can be studied using this set and the rules of Boolean algebra.
- The three operations in Boolean algebra that we will use most are complementation, the Boolean sum, and the Boolean product.
- The complement of an element, denoted with a bar, is defined by $\overline{0}=1$ and $\overline{1}=0$.

Introduction (cont.)

- The Boolean sum, denoted by + or by OR, has the following values:

$$
1+1=1, \quad 1+0=1, \quad 0+1=1, \quad 0+0=0 .
$$

- The Boolean product, denoted by " or by AND, has the following values:

$$
1 \cdot 1=1, \quad 1 \cdot 0=0, \quad 0 \cdot 1=0, \quad 0 \cdot 0=0
$$

Example1

\Rightarrow Find the value of $1 \cdot 0+\overline{(0+1)}$.

- Solution:

$$
\begin{aligned}
1 \cdot 0+\overline{(0+1)} & =0+\overline{1} \\
& =0+0 \\
& =0 .
\end{aligned}
$$

Logical Equivalence

- The complement, Boolean sum, and Boolean product correspond to the logical operators, \neg, \vee, and \wedge, respectively, where 0 corresponds to F (false) and 1 corresponds to T (true).
- Equalities in Boolean algebra can be directly translated into equivalences of compound propositions.
- Conversely, equivalences of compound propositions can be translated into equalities in Boolean algebra.

Example2

Translate $1 \cdot 0+\overline{(0+1)}=0$, the equality found in Example 1, into a logical equivalence.

- Solution: We obtain a logical equivalence when we translate each 1 into a T , each 0 into an F, each Boolean sum into a disjunction, each Boolean product into a conjunction, and each complementation into a negation.
- We obtain:

$$
(\mathbf{T} \wedge \mathbf{F}) \vee \neg(\mathbf{T} \vee \mathbf{F}) \equiv \mathbf{F} .
$$

Example3

- Translate the logical equivalence $(\mathbf{T} \wedge \mathbf{T}) \vee \neg \mathbf{F} \equiv \mathbf{T}$ into an identity in Boolean algebra.
- Solution: We obtain an identity in Boolean algebra when we translate each T into a 1 , each F into a 0 , each disjunction into a Boolean sum, each conjunction into a Boolean product, and each negation into a complementation.
- We obtain:

$$
(1 \cdot 1)+\overline{0}=1 .
$$

Boolean Expressions and Boolean Functions

- Find the values of the Boolean function represented by $F(x, y, z)=x y+\bar{z}$.
Solution: The values of this function are displayed in Table.

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{x} \boldsymbol{y}$	\bar{z}	$\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})=\boldsymbol{x} \boldsymbol{y}+\overline{\boldsymbol{z}}$
1	1	1	1	0	1
1	1	0	1	1	1
1	0	1	0	0	0
1	0	0	0	1	1
0	1	1	0	0	0
0	1	0	0	1	1
0	0	1	0	0	0
0	0	0	0	1	1

Boolean Identities

Identity	Name
$\overline{\bar{x}}=x$	Law of the double complement
$\begin{aligned} & x+x=x \\ & x \cdot x=x \end{aligned}$	Idempotent laws
$\begin{aligned} & x+0=x \\ & x \cdot 1=x \end{aligned}$	Identity laws
$\begin{aligned} & x+1=1 \\ & x \cdot 0=0 \end{aligned}$	Domination laws
$\begin{aligned} & x+y=y+x \\ & x y=y x \end{aligned}$	Commutative laws
$\begin{aligned} & x+(y+z)=(x+y)+z \\ & x(y z)=(x y) z \end{aligned}$	Associative laws
$\begin{aligned} & x+y z=(x+y)(x+z) \\ & x(y+z)=x y+x z \end{aligned}$	Distributive laws
$\begin{aligned} & \overline{(x y)}=\bar{x}+\bar{y} \\ & (x+y)=\bar{x} \bar{y} \end{aligned}$	De Morgan's laws
$\begin{aligned} & x+x y=x \\ & x(x+y)=x \end{aligned}$	Absorption laws
$x+\bar{x}=1$	Unit property
$x \bar{x}=0$	Zero property

Example4

- Translate the distributive law $x+y z=(x+y)(x+z)$ into a logical equivalence.
- Solution: change the Boolean variables x, y, and z into the propositional variables p, q, and r.
- Next, we change each Boolean sum into a disjunction and each Boolean product into a conjunction.

$$
p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)
$$

12.2 Representing Boolean Functions

- Two important problems of Boolean algebra will be studied in this section.
- The first problem is: Given the values of a Boolean function, how can a Boolean expression that represents this function be found?
- The second problem is: Is there a smaller set of operators that can be used to represent all Boolean functions?

Sum-of-Product Expansions

- Question: Find Boolean expressions that represent the functions $F(x, y, z)$ and $G(x, y, z)$, which are given in Table 1.

$\|c\|$	TABLE			
\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	\boldsymbol{F}	\boldsymbol{G}
1	1	1	0	0
1	1	0	0	1
1	0	1	1	0
1	0	0	0	0
0	1	1	0	0
0	1	0	0	1
0	0	1	0	0
0	0	0	0	0

- Solution: F is, $x \bar{y} z$, has the value 1 if and only if $x=y=z=1$, which holds if and only if $x=z=1$ and $y=0$.
- The Boolean sum of these two products, $x y \bar{z}+\bar{x} y \bar{z}$, represents G, because it has the value 1 if and only if $x=y=1$ and $z=0$, or $x=z=0$ and $y=1$.

Example

- Find the sum-of-products expansion for the function $F(x, y, z)=(x+y) \bar{z}$.
- Solution: We will find the sum-of-products expansion of $F(x, y, z)$ in two ways. First, we will use Boolean identities to expand the product and simplify. We find that

$$
\begin{aligned}
F(x, y, z) & =(x+y) \bar{z} & & \\
& =x \bar{z}+y \bar{z} & & \text { Distributive law } \\
& =x 1 \bar{z}+1 y \bar{z} & & \text { Identity law } \\
& =x(y+\bar{y}) \bar{z}+(x+\bar{x}) y \bar{z} & & \text { Unit property } \\
& =x y \bar{z}+x \bar{y} \bar{z}+x y \bar{z}+\bar{x} y \bar{z} & & \text { Distributive law } \\
& =x y \bar{z}+x \bar{y} \bar{z}+\bar{x} y \bar{z} . & & \text { Idempotent law }
\end{aligned}
$$

Solution (cont.)

- Second, we can construct the sum-of-products expansion by determining the values of F for all possible values of the variables x, y, and z. These values are found in Table 2.

$$
F(x, y, z)=x y \bar{z}+x \bar{y} \bar{z}+\bar{x} y \bar{z}
$$

$\|7\|$					
TABLE 2					
\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{x}+\boldsymbol{y}$	\bar{z}	$(\boldsymbol{x}+\boldsymbol{y}) \bar{z}$
1	1	1	1	0	0
1	1	0	1	1	1
1	0	1	1	0	0
1	0	0	1	1	1
0	1	1	1	0	0
0	1	0	1	1	1
0	0	1	0	0	0
0	0	0	0	1	0

Solution (cont.)

- It is also possible to find a Boolean expression that represents a Boolean function by taking a Boolean product of Boolean sums.
- The resulting expansion is called the conjunctive normal form or product-ofsums expansion of the function.

