Ceng 124 Discrete Structures

2018-2019 Spring Semester

Topics

2.1 Sets Theory2.2 Sets Operations

2.1 Sets Theory

Many important discrete structures are built using sets, which are collections of objects.

sets->relations->graphs->finite state machines-> model computing machines

A set is an unordered collection of objects, called *elements* or *members* of the set. A set is said to *contain* its elements. We write $a \in A$ to denote that a is an element of the set A. The notation $a \notin A$ denotes that a is not an element of the set A.

A = {a1, a2, ..., an} "A contains..."

Order of elements is meaningless

It does not matter how often the same element is listed.

Set Equality

- Sets A and B are equal if and only if they contain exactly the same elements.
- **Examples**:

$$A = \{9, 2, 7, -3\}, B = \{7, 9, -3, 2\}:$$
 $A = B$

A = {dog, cat, horse}, B = {cat, horse, squirrel, dog} : $A \neq B$ A = {dog, cat, horse}, B = {cat, horse, dog, dog} : A = B

Roster Method

- There are several ways to describe a set. One way is to list all the members of a set, when this is possible. We use a notation where all members of the set are listed between braces. This way of describing a set is known as the roster method.
- The set V of all vowels in the English alphabet can be written as
 V = {a, e, i, o, u}.
- The set O of odd positive integers less than 10 can be expressed by

 $O = \{1, 3, 5, 7, 9\}.$

Set Builder Notation

Another way to describe a set is to use set builder notation:

 $O = \{x \mid x \text{ is an odd positive integer less than 10}\},\$

 $O = \{x \in \mathbb{Z} + | x \text{ is odd and } x < 10\}.$

Standard Sets

- Natural numbers N = {0, 1, 2, 3, …}
- Integers Z = {..., -2, -1, 0, 1, 2, ...}
- Positive Integers Z+ = {1, 2, 3, 4, …}
- Real Numbers **R** = {47.3, -12, π , ...}
- ▶ Rational Numbers $\mathbf{Q} = \{ p/q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, and q !=0 \}$

Q = {2/5, 13/5, 15, ...}

Equal Sets

Two sets are *equal* if and only if they have the same elements. Therefore, if A and B are sets, then A and B are equal if and only if $\forall x (x \in A \leftrightarrow x \in B)$. We write A = B if A and B are equal sets.

- The sets {1, 3, 5} and {3, 5, 1} are equal, because they have the same elements.
- Also {1, 3, 3, 3, 5, 5, 5, 5} is the same as the set {1, 3, 5} because they have the same elements.

Subsets

The set A is a *subset* of B if and only if every element of A is also an element of B. We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.

We can completely formalize this:

 $A \subseteq B \Leftrightarrow \forall x \ (x \in A \rightarrow x \in B)$

Examples:

$A = \{3, 9\}, B = \{5, 9, 1, 3\},\$	$A \subseteq B$?	True
$A = \{3, 3, 3, 9\}, B = \{5, 9, 1, 3\},\$	$A \subseteq B$?	True
$A = \{1, 2, 3\}, B = \{2, 3, 4\},\$	$A \subseteq B$?	False

Empty Set and Singleton Set

- Empty Set: The void set, the null set, the empty set, denoted Ø, is the set with no members. Therefore, Ø is a subset of every set.
- The empty set can also be denoted by { }.
- A set with one element is called a singleton set.
- A common error is to confuse the empty {Ø} has one more element than Ø. set Ø with the set {Ø}, which is a singleton set. The single element of the set {Ø} is the empty set itself!

Size of the Set

Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a *finite set* and that n is the *cardinality* of S. The cardinality of S is denoted by |S|.

- Let S be the set of letters in the English alphabet. Then |S| = 26.
- Because the null set has no elements, it follows that $|\emptyset| = 0$.

A set is said to be *infinite* if it is not finite.

Cardinality of Sets

If a set S contains n distinct elements, n∈N, we call S a finite set with cardinality n.

Examples:

$A = \{M, B, P\},\$	A = 3
$B=\{1,\{2,3\},\{4,5\},6\},$	B = 4
C = Ø	C = 0
$D = \{ x \in \mathbf{N} \mid x \le 7000 \}$	D = 7001
$E = \{ x \in \mathbf{N} \mid x \ge 7000 \}$	E is Infinite

Power Sets

Given a set S, the *power set* of S is the set of all subsets of the set S. The power set of S is denoted by $\mathcal{P}(S)$.

- What is the power set of the set {0, 1, 2}?
- The power set P({0, 1, 2}) is the set of all subsets of {0, 1, 2}. Hence, P({0, 1, 2}) = {Ø, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}.

Power Set (cont.)

- ► 2A or P(A) "power set of A" $2A = \{B \mid B \subseteq A\}$ (contains all subsets of A)
- Examples:

A = \varnothing 2A = { \varnothing } Note: |A| = 0, |2A| = 1

Cartesian Products

Let A and B be sets. The *Cartesian product* of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. Hence,

 $A \times B = \{(a, b) \mid a \in A \land b \in B\}.$

Example: $A = \{x, y\}, B = \{a, b, c\}$ $A \times B = \{(x, a), (x, b), (x, c), (y, a), (y, b), (y, c)\}$

Set Operations

- Union: A∪B = {x | x∈A ∨ x∈B}
 Example: A = {a, b}, B = {b, c, d}
 A∪B = {a, b, c, d}
- Intersection: A∩B = {x | x∈A ∧ x∈B} Example: A = {a, b}, B = {b, c, d} A∩B = {b}
- Disjoint: if their (A, B) intersection is empty Example Let A = {1, 3, 5, 7, 9} and B = {2, 4, 6, 8, 10}. Because A ∩ B = Ø, A and B are disjoint.
- Difference: Let A and B be sets. The difference of A and B, denoted by A B, is the set containing those elements that are in A but not in B. Example The difference of {1, 3, 5} and {1, 2, 3} is the set {5}.

Set Identities

TABLE 1 Set Identities.	
Identity	Name
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws
$\begin{aligned} A \cup U &= U \\ A \cap \emptyset &= \emptyset \end{aligned}$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws

$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

Proof of De Morgan's Law

Use set builder notation and logical equivalences to establish (prove) the first De Morgan law $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

$$\overline{A \cap B} = \{x \mid x \notin A \cap B\}$$

$$= \{x \mid \neg (x \in (A \cap B))\}$$

$$= \{x \mid \neg (x \in A \land x \in B)\}$$

$$= \{x \mid \neg (x \in A) \lor \neg (x \in B)\}$$

$$= \{x \mid x \notin A \lor x \notin B\}$$

$$= \{x \mid x \in \overline{A} \lor x \in \overline{B}\}$$

$$= \{x \mid x \in \overline{A} \lor \overline{B}\}$$

$$= \{x \mid x \in \overline{A} \cup \overline{B}\}$$

Computer Representation of Sets

- Example: Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and the ordering of elements of U has the elements in increasing order; that is, ai = i. What bit strings represent the subset of all odd integers in U, the subset of all even integers in U, and the subset of integers not exceeding 5 in U?
- all odd integers in U, namely, {1, 3, 5, 7, 9}, by the string
 10 1010 1010.
- all even integers in U, namely, {2, 4, 6, 8, 10}, by the string 01 0101 0101.
- do not exceed 5, namely, {1, 2, 3, 4, 5}, by the string
 11 1110 0000.

Computer Representation of Sets (cont.)

- Example 2 : The bit strings for the sets {1, 2, 3, 4, 5} and {1, 3, 5, 7, 9} are 11 1110 0000 and 10 1010 1010, respectively. Use bit strings to find the union and intersection of these sets.
- The bit string for the union of these sets is
 11 1110 0000 ∨ 10 1010 1010 = 11 1110 1010,
 which corresponds to the set {1, 2, 3, 4, 5, 7, 9}.
 The bit string for the intersection of these sets is
 11 1110 0000 ∧ 10 1010 1010 = 10 1010 0000,

which corresponds to the set $\{1, 3, 5\}$.