Ceng 124 Discrete Structures
 2018-2019 Spring Semester

Topics

- 2.1 Sets Theory
- 2.2 Sets Operations

2.1 Sets Theory

Many important discrete structures are built using sets, which are collections of objects.
sets->relations->graphs->finite state machines-> model computing machines

A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements. We write $a \in A$ to denote that a is an element of the set A. The notation $a \notin A$ denotes that a is not an element of the set A.
$A=\{a 1, a 2, \ldots, a n\} \quad$ "A contains..."
Order of elements is meaningless
It does not matter how often the same element is listed.

Set Equality

- Sets A and B are equal if and only if they contain exactly the same elements.
- Examples:

$$
\begin{array}{ll}
A=\{9,2,7,-3\}, B=\{7,9,-3,2\}: & A=B \\
A=\{d o g, \text { cat, horse }\}, B=\{c a t, \text { horse, squirrel, dog }\}: & A \neq B \\
A=\{\text { dog, cat, horse }\}, B=\{c a t, \text { horse, dog, dog }\}: & A=B
\end{array}
$$

Roster Method

- There are several ways to describe a set. One way is to list all the members of a set, when this is possible. We use a notation where all members of the set are listed between braces. This way of describing a set is known as the roster method.
- The set V of all vowels in the English alphabet can be written as $V=\{a, e, i, o, u\}$.
- The set O of odd positive integers less than 10 can be expressed by $O=\{1,3,5,7,9\}$.

Set Builder Notation

- Another way to describe a set is to use set builder notation: $O=\{x \mid x$ is an odd positive integer less than 10\}, $O=\{x \in Z+\mid x$ is odd and $x<10\}$.

Standard Sets

- Natural numbers $\mathbf{N}=\{0,1,2,3, \ldots\}$
- Integers $\mathbf{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- Positive Integers $\mathbf{Z}_{\mathbf{+}}=\{1,2,3,4, \ldots\}$
- Real Numbers $\mathbf{R}=\{47.3,-12, \pi, \ldots\}$
- Rational Numbers $\mathbf{Q}=\{p / q \mid p \in Z, q \in Z$, and $q!=0\}$ $\mathbf{Q}=\{2 / 5,13 / 5,15, \ldots\}$

Equal Sets

Two sets are equal if and only if they have the same elements. Therefore, if A and B are sets, then A and B are equal if and only if $\forall x(x \in A \leftrightarrow x \in B)$. We write $A=B$ if A and B are equal sets.

- The sets $\{1,3,5\}$ and $\{3,5,1\}$ are equal, because they have the same elements.
- Also $\{1,3,3,3,5,5,5,5\}$ is the same as the set $\{1,3,5\}$ because they have the same elements.

Subsets

The set A is a subset of B if and only if every element of A is also an element of B. We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.

- We can completely formalize this:

$$
A \subseteq B \Leftrightarrow \forall x(x \in A \rightarrow x \in B)
$$

- Examples:

$$
\begin{array}{lll}
A=\{3,9\}, B=\{5,9,1,3\}, & A \subseteq B ? & \text { True } \\
A=\{3,3,3,9\}, B=\{5,9,1,3\}, & A \subseteq B ? & \text { True } \\
A=\{1,2,3\}, B=\{2,3,4\}, & A \subseteq B ? & \text { False }
\end{array}
$$

Empty Set and Singleton Set

- Empty Set: The void set, the null set, the empty set, denoted \emptyset, is the set with no members. Therefore, \varnothing is a subset of every set.
- The empty set can also be denoted by $\}$.
- A set with one element is called a singleton set.
- A common error is to confuse the empty $\{\emptyset\}$ has one more element than \emptyset. set \varnothing with the set $\{\varnothing\}$, which is a singleton set. The single element of the set $\{\varnothing\}$ is the empty set itself!

Size of the Set

Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a finite set and that n is the cardinality of S. The cardinality of S is denoted by $|S|$.

- Let S be the set of letters in the English alphabet. Then $|S|=26$.
- Because the null set has no elements, it follows that $|\varnothing|=0$.

A set is said to be infinite if it is not finite.

Cardinality of Sets

- If a set S contains n distinct elements, $n \in \mathbf{N}$, we call S a finite set with cardinality n .
- Examples:
$A=\{M, B, P\}$,

$$
|A|=3
$$

$B=\{1,\{2,3\},\{4,5\}, 6\}$,
$|B|=4$
$C=\varnothing$
$|C|=0$
$D=\{x \in \mathbf{N} \mid x \leq 7000\}$
$|\mathrm{D}|=7001$
$E=\{x \in \mathbf{N} \mid x \geq 7000\}$
E is Infinite!

Power Sets

Given a set S, the power set of S is the set of all subsets of the set S. The power set of S is denoted by $\mathcal{P}(S)$.

- What is the power set of the set $\{0,1,2\}$?
- The power set $P(\{0,1,2\})$ is the set of all subsets of $\{0,1,2\}$. Hence, $P(\{0,1,2\})=\{\emptyset,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}$.

Power Set (cont.)

- $2 A$ or $P(A) \quad$ "power set of A "
$2 A=\{B \mid B \subseteq A\} \quad$ (contains all subsets of A)
- Examples:
$A=\{x, y, z\}$
$2 A=\{\varnothing,\{x\},\{y\},\{z\},\{x, y\},\{x, z\},\{y, z\},\{x, y, z\}\}$
$A=\varnothing$
$2 A=\{\varnothing\}$
Note: $|A|=0,|2 A|=1$

Cartesian Products

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. Hence,

$$
A \times B=\{(a, b) \mid a \in A \wedge b \in B\} .
$$

Example: $A=\{x, y\}, B=\{a, b, c\}$
$A \times B=\{(x, a),(x, b),(x, c),(y, a),(y, b),(y, c)\}$

Set Operations

- Union: $A \cup B=\{x \mid x \in A \vee x \in B\}$

Example: $A=\{a, b\}, B=\{b, c, d\} \quad A \cup B=\{a, b, c, d\}$

- Intersection: $A \cap B=\{x \mid x \in A \wedge x \in B\}$

Example: $A=\{a, b\}, B=\{b, c, d\} A \cap B=\{b\}$

- Disjoint: if their (A, B) intersection is empty

Example Let $A=\{1,3,5,7,9\}$ and $B=\{2,4,6,8,10\}$. Because $A \cap B=\varnothing$, A and B are disjoint.
\Rightarrow Difference: Let A and B be sets. The difference of A and B, denoted by $A-B$, is the set containing those elements that are in A but not in B.
Example The difference of $\{1,3,5\}$ and $\{1,2,3\}$ is the set $\{5\}$.

Set Identities

TABLE 1 Set Identities.	
Identity	Name
$A \cap U=A$	Identity laws
$A \cup \emptyset=A$	
$A \cup U=U$	Domination laws
$A \cap \emptyset=\emptyset$	Idempotent laws
$A \cup A=A$	
$A \cap A=A$	Complementation law
$\overline{(\bar{A})}=A$	Commutative laws
$A \cup B=B \cup A$	
$A \cap B=B \cap A$	Associative laws
$A \cup(B \cup C)=(A \cup B) \cup C$	
$A \cap(B \cap C)=(A \cap B) \cap C$	Distributive laws
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$	
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$	

$\overline{A \cap B}=\bar{A} \cup \bar{B}$	De Morgan's laws
$\overline{A \cup B}=\bar{A} \cap \bar{B}$	
$A \cup(A \cap B)=A$	Absorption laws
$A \cap(A \cup B)=A$	
$A \cup \bar{A}=U$	Complement laws
$A \cap \bar{A}=\emptyset$	

Proof of De Morgan's Law

- Use set builder notation and logical equivalences to establish (prove) the first De Morgan law $\overline{A \cap B}=\bar{A} \cup \bar{B}$.

$$
\begin{aligned}
\overline{A \cap B} & =\{x \mid x \notin A \cap B\} \\
& =\{x \mid \neg(x \in(A \cap B))\} \\
& =\{x \mid \neg(x \in A \wedge x \in B)\} \\
& =\{x \mid \neg(x \in A) \vee \neg(x \in B)\} \\
& =\{x \mid x \notin A \vee x \notin B\} \\
& =\{x \mid x \in \bar{A} \vee x \in \bar{B}\} \\
& =\{x \mid x \in \bar{A} \cup \bar{B}\} \\
& =\bar{A} \cup \bar{B}
\end{aligned}
$$

Computer Representation of Sets

- Example: Let $U=\{1,2,3,4,5,6,7,8,9,10\}$, and the ordering of elements of U has the elements in increasing order; that is, ai = i. What bit strings represent the subset of all odd integers in U, the subset of all even integers in U, and the subset of integers not exceeding 5 in U ?
- all odd integers in U, namely, $\{1,3,5,7,9\}$, by the string 1010101010.
- all even integers in U, namely, $\{2,4,6,8,10\}$, by the string 0101010101.
- do not exceed 5 , namely, $\{1,2,3,4,5\}$, by the string 1111100000.

Computer Representation of Sets (cont.)

- Example 2 : The bit strings for the sets $\{1,2,3,4,5\}$ and $\{1,3,5,7,9\}$ are 1111100000 and 101010 1010, respectively. Use bit strings to find the union and intersection of these sets.
- The bit string for the union of these sets is
$1111100000 \vee 1010101010=111110$ 1010, which corresponds to the set $\{1,2,3,4,5,7,9\}$. The bit string for the intersection of these sets is
- $1111100000 \wedge 1010101010=1010100000$, which corresponds to the set $\{1,3,5\}$.

