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Functions

 Definition: Let A and B be nonempty sets. A function f from A to B,

denoted f: A → B is an assignment of each element of A to exactly

one element of B. We write f(a) = b if b is the unique element of B

assigned by the function f to the element a of A.

 Functions are sometimes called mappings or transformations.
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Domain-Codomain-Image-Preimage

Given a function f: A → B:

 We say f maps A to B or 

f is a mapping from  A to B.

 A is called the domain of f.

 B is called the codomain of f.

 If f(a) = b, 

 then b is called the image of a under f.

 a is called the preimage of b.

 The range of f is the set of all images of points in A under f. We denote it by 
f(A).

 Two functions are equal when they have the same domain, the same 
codomain and map each element of the domain to the same element of the 
codomain. 
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Example

 Let G is the function name

 Domain of the set G 

{Adams, Chou, Goodfriend, Rodriguez, Stevens}

 Codomain is the set {A,B,C,D, F}. 

 The range of G is the set {A,B,C, F},

because each grade except D is assigned to some student.

by Sibel T. Özyer, Spring 2019

Assignment of Grades



Representing Functions

 Functions are specified in many different ways. 

 An explicit statement of the assignments, as in Figure. 

 A formula, such as f (x) = x + 1, to define a function.

 A computer program to specify a function.
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Functions in Programming Languages

 The domain and codomain of functions are often specified in programming 

languages. For instance, the Java statement

int floor(float real) {. . .}

 and the C++ function statement

int function (float x) {. . .}

 both tell us that the domain of the floor function is the set of real numbers 

(represented by floating point numbers) and its codomain is the set of 

integers.
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One-to-One Function

 Definition: A function f is said to be one-to-one ,  or injective, if and 

only if f(a) = f(b) implies that  a = b for all a and b in the domain of f. 

A function is said to be an injection if it is one-to-one.
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Onto Function

 Definition: A function f from A to B is called onto or surjective, if and 

only if for every element there is an element               

with                 A function f is called a surjection if it is onto.
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One-to-one Correspondence

 Definition: A function f is a one-to-one correspondence, or a bijection, 

if it is both one-to-one and onto (surjective and injective).
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Different Types of Correspondences
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Inverse Function

 Definition: Let f be a bijection from A to B. Then the inverse of f, 

denoted , is the function from B to A defined as
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Inverse Question

Example: Let f be the function from {a, b, c} to {1, 2, 3} such that 

f(a) = 2, f(b) = 3, and f(c) = 1. Is f invertible and if so what is its inverse?

Solution: The function f is invertible because it is a one-to-one

correspondence. The inverse function f-1 reverses the correspondence

given by f, so f-1 (1) = c, f-1 (2) = a, and f-1 (3) = b.
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Composition

 Definition: Let f: B → C, g: A → B. The composition of f with g, 

denoted           is the function from A to C defined by
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Composition Question

 Example: Let f and g be functions from the set of integers to the set of 

integers defined by  f(x) = 2x + 3 and g(x) = 3x + 2. 

What is the composition of f and g, and also the composition of g and f ?

 Solution:

f∘g (x)= f(g(x)) = f(3x + 2) = 2(3x + 2) + 3 = 6x + 7

g∘f (x)= g(f(x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11 
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Graphs of Functions

 Let f be a function from the set A to the set B. The graph of the function f is 

the set of ordered pairs   {(a,b) | a ∈A and f(a) = b}.
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Floor and Ceiling Functions

 Floor and Ceiling functions are two important functions in discrete 

mathematics.

 The floor function, denoted

is the largest integer less than or equal to x.

 The ceiling function, denoted

is the smallest integer greater than or equal to x

 Examples:
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Graphs of Floor and Ceiling Functions 
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Question1

 Data stored on a computer disk or transmitted over a

network are usually represented as a string of bytes. Each

byte is made up of 8 bits. How many bytes are required to

encode 100 bits of data?

Solution:                             bytes are required.
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Question2

 In synchronous transfer mode(ATM) (a communication protocol used

on backbone networks), data are organized into cells of 53 bytes. How

many ATM cells can be transmitted in 1 minute over a connection that

transmits data at the rate of 500 kilobits per second?

Solution: In 1 minute, this connection can transmit 

500.000 * 60=30.000.000 bits

Each ATM cell is 53 bytes long, means that  it is 53*8=424 bits long.

ATM cells can be transmitted in 1 minute over  a    

500 kilobit per sec connection.
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2.4 Sequences and Summations

 Sequences are ordered lists of elements. 

 1, 2, 3, 5, 8

 1, 3,  9, 27, 81, …….

 Used in discrete mathematics.

 An important data structure in computer science.

 We will introduce the  terminology to represent sequences and sums of the 

terms in the sequences.
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Sequences

Definition: A sequence is a function from a subset of the

integers (usually either the set {0, 1, 2, 3, 4, …..} or {1, 2, 3, 
4, ….} ) to a set S.

 The notation an is used to denote the image of the

integer n. We can think of an as the equivalent of f(n)

where f is a function from {0,1,2,…..} to S. We call an a

term of the sequence.
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Sequences (cont.)

 Example: Consider the sequence            where
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Geometric Progression 
Definition: A geometric progression is a sequence of the form:

where the initial term a and the common ratio r are real numbers.

Examples:

1. Let a = 1 and r = −1. Then:

1. Let  a = 2 and r = 5. Then:

2. Let a = 6 and r = 1/3. Then:
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Arithmetic Progression

Definition: A arithmetic progression is a sequence of the form:

where the initial term a and the common difference d are real numbers.

Examples:

1. Let a = −1 and d = 4: 

2. Let  a = 7 and d = −3: 

3. Let a = 1 and d = 2: 
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Strings

Definition: A string is a finite sequence of characters from a finite set 

(an alphabet).

 Sequences of characters or bits  are important in computer science.

 The empty string is represented by λ.

 The string  abcde has length 5.
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Recurrence Relations

Definition: A recurrence relation for the sequence {an} is an equation that

expresses an in terms of one or more of the previous terms of the sequence, 

namely, a0, a1, …, an-1, for all integers n with n ≥ n0, where n0 is a nonnegative 

integer. 

 A sequence is called a solution of a recurrence relation if its terms satisfy the 

recurrence relation.

 The initial conditions for a sequence specify the terms that precede the first 

term where the recurrence relation takes effect. 
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Questions about Recurrence Relations

Example 1: Let {an} be a sequence that satisfies the recurrence relation 

an = an-1 + 3 for n = 1,2,3,4,….  and suppose that a0 = 2. What are a1 , a2 and a3? 

[Here a0 = 2 is the initial condition]

Solution: We see from the recurrence relation that

a1 = a0  + 3 = 2 + 3 = 5

a2 = 5 + 3 = 8

a3 = 8 + 3 = 11
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Questions about Recurrence Relations

Example 2 : Let {an} be a sequence that satisfies the recurrence relation 

an = an-1 – an-2 for n = 2,3,4,…. and suppose that a0 = 3 and a1 = 5.

What are a2 and a3? 

[Here the initial conditions are a0 = 3 and a1 = 5. ]

Solution: We see from the recurrence relation that

a2 = a1 - a0  = 5 – 3 = 2

a3 = a2 – a1  = 2 – 5 = –3
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Sequences Table
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Summations

 Sum of the terms       

 The notation:

represents

 The variable j is called the index of summation. It runs through all the 

integers starting with its lower limit  m and ending with its upper limit n. 
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Summations(cont.)

 More generally for a set S:

 Examples:
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Index of Summation

 Suppose we have the sum              ,  Indexes are 1,2,3,4,5.

 Both sums are 1+4+9+16+25 = 55
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Double Summation

 Nested loops in computer programs.  An example:

 Evaluation of the double sum:

 6+12+18+24 = 60
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Summation Formulas
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