Ceng 124 Discrete Structures
 2018-2019 Spring Semester

Topics

- 2.3 Functions
- 2.4 Sequences and Summations

Topics

- 2.3 Functions
- Definition of a Function.
- Domain, Codomain
- Image, Preimage
- Injection, Surjection, Bijection
- Inverse Function
- Function Composition
- Graphing Functions
- Floor, Ceiling Functions
- 2.4 Sequences and Summations
- Sequences.
- Geometric Progression, Arithmetic Progression
- Recurrence Relations
- Summations

Functions

- Definition: Let A and B be nonempty sets. A function from A to B, denoted $f: A \rightarrow B$ is an assignment of each element of A to exactly one element of B. We write $f(a)=b$ if b is the unique element of B assigned by the function f to the element a of A.
- Functions are sometimes called mappings or transformations.

Domain-Codomain-Image-Preimage

Given a function $f: A \rightarrow B$:

- We say f maps A to B or
f is a mapping from A to B.
- A is called the domain of f.
- B is called the codomain of f.

- If $f(a)=b$,
then b is called the image of a under f.
- a is called the preimage of b.
- The range of f is the set of all images of points in A under f. We denote it by $f(A)$.
- Two functions are equal when they have the same domain, the same codomain and map each element of the domain to the same element of the codomain.

Example

- Let G is the function name
- Domain of the set G

Assignment of Grades
\{Adams, Chou, Goodfriend, Rodriguez, Stevens\}

- Codomain is the set $\{A, B, C, D, F\}$.
- The range of G is the set $\{A, B, C, F\}$, because each grade except D is assigned to some student.

Representing Functions

- Functions are specified in many different ways.
- An explicit statement of the assignments, as in Figure.
\Rightarrow A formula, such as $f(x)=x+1$, to define a function.
- A computer program to specify a function.

Assignment of Grades

Functions in Programming Languages

- The domain and codomain of functions are often specified in programming languages. For instance, the Java statement

$$
\text { int floor(float real) \{. . .\} }
$$

- and the C_{++}function statement

$$
\text { int function (float x) \{. . .\} }
$$

- both tell us that the domain of the floor function is the set of real numbers (represented by floating point numbers) and its codomain is the set of integers.

One-to-One Function

- Definition: A function f is said to be one-to-one, or injective, if and only if $f(a)=f(b)$ implies that $a=b$ for all a and b in the domain of f. A function is said to be an injection if it is one-to-one.

An one-to-one function

Onto Function

- Definition: A function f from A to B is called onto or surjective, if and only if for every element $b \in B$ there is an element $a \in A$ with $f(a)=b$ A function f is called a surjection if it is onto.

One-to-one Correspondence

- Definition: A function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto (surjective and injective).

Different Types of Correspondences

Inverse Function

- Definition: Let f be a bijection from A to B . Then the inverse of f , denoted $f-1$, is the function from B to A defined as

$$
f^{-1}(y)=x \text { iff } f(x)=y
$$

Inverse Question

Example: Let f be the function from $\{a, b, c\}$ to $\{1,2,3\}$ such that $f(a)=2, f(b)=3$, and $f(c)=1$. Is f invertible and if so what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The inverse function f^{-1} reverses the correspondence given by f, so $f^{-1}(1)=c, \quad f^{-1}(2)=a$, and $f^{-1}(3)=b$.

Composition

- Definition: Let $f: B \rightarrow C, g: A \rightarrow B$. The composition of f with g, denoted $f \circ g$ is the function from A to C defined by

$$
f \circ g(x)=f(g(x))
$$

Composition Question

- Example: Let f and g be functions from the set of integers to the set of integers defined by $f(x)=2 x+3$ and $g(x)=3 x+2$.
What is the composition of f and g, and also the composition of g and f ?
- Solution:

$$
\begin{aligned}
& f \circ g(x)=f(g(x))=f(3 x+2)=2(3 x+2)+3=6 x+7 \\
& g \circ f(x)=g(f(x))=g(2 x+3)=3(2 x+3)+2=6 x+11
\end{aligned}
$$

Graphs of Functions

- Let f be a function from the set A to the set B. The graph of the function f is the set of ordered pairs $\{(a, b) \mid a \in A$ and $f(a)=b\}$.

Graph of $f(n)=2 n+1$ from Z to Z

Graph of $f(x)=x^{2}$ from Z to Z

Floor and Ceiling Functions

- Floor and Ceiling functions are two important functions in discrete mathematics.
- The floor function, denoted $\quad f(x)=\lfloor x\rfloor$ is the largest integer less than or equal to x.
- The ceiling function, denoted $\quad f(x)=\lceil x\rceil$ is the smallest integer greater than or equal to x
- Examples:

$$
\begin{array}{ll}
\lceil 3.5\rceil=4 & \lfloor 3.5\rfloor=3 \\
\lceil-1.5\rceil=-1 & \lfloor-1.5\rfloor=-2
\end{array}
$$

Graphs of Floor and Ceiling Functions

(a) $y=[x]$

(b) $y=[x]$

Graph of (a) Floor and (b) Ceiling Functions

Question1

- Data stored on a computer disk or transmitted over a network are usually represented as a string of bytes. Each byte is made up of 8 bits. How many bytes are required to encode 100 bits of data?
Solution: $\quad[100 / 8]=[12.5\rceil=13$ bytes are required.

Question2

- In synchronous transfer mode(ATM) (a communication protocol used on backbone networks), data are organized into cells of 53 bytes. How many ATM cells can be transmitted in 1 minute over a connection that transmits data at the rate of 500 kilobits per second?

Solution: In 1 minute, this connection can transmit
500.000 * $60=30.000 .000$ bits

Each ATM cell is 53 bytes long, means that it is $53 * 8=424$ bits long. $[30,000,000 / 424]=70,754$ ATM cells can be transmitted in 1 minute over a 500 kilobit per sec connection.

2.4 Sequences and Summations

- Sequences are ordered lists of elements.
- $1,2,3,5,8$
- $1,3,9,27,81, \ldots \ldots$.
- Used in discrete mathematics.
- An important data structure in computer science.
- We will introduce the terminology to represent sequences and sums of the terms in the sequences.

Sequences

Definition: A sequence is a function from a subset of the integers (usually either the set $\{0,1,2,3,4, \ldots .$.$\} or \{1,2,3$, $4, \ldots$.$\}) to a set S$.

- The notation a_{n} is used to denote the image of the integer n. We can think of a_{n} as the equivalent of $f(n)$ where f is a function from $\{0,1,2, \ldots .$.$\} to S$. We call a_{n} a term of the sequence.

Sequences (cont.)

- Example: Consider the sequence $\left\{a_{n}\right\}$ where

$$
\begin{gathered}
a_{n}=\frac{1}{n} \quad\left\{a_{n}\right\}=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \\
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \ldots
\end{gathered}
$$

Geometric Progression

Definition: A geometric progression is a sequence of the form:

$$
a, a r, a r^{2}, \ldots, a r^{n}, \ldots
$$

where the initial term a and the common ratio r are real numbers.
Examples:

1. Let $a=1$ and $r=-1$. Then:

$$
\left\{b_{n}\right\}=\left\{b_{0}, b_{1}, b_{2}, b_{3}, b_{4}, \ldots\right\}=\{1,-1,1,-1,1, \ldots\}
$$

1. Let $a=2$ and $r=5$. Then:

$$
\left\{c_{n}\right\}=\left\{c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, \ldots\right\}=\{2,10,50,250,1250, \ldots\}
$$

2. Let $a=6$ and $r=1 / 3$. Then:

$$
\left\{d_{n}\right\}=\left\{d_{0}, d_{1}, d_{2}, d_{3}, d_{4}, \ldots\right\}=\left\{6,2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \ldots\right\}
$$

Arithmetic Progression

Definition: A arithmetic progression is a sequence of the form:

$$
a, a+d, a+2 d, \ldots, a+n d, \ldots
$$

where the initial term a and the common difference d are real numbers.

Examples:

1. Let $a=-1$ and $d=4$:

$$
\left\{s_{n}\right\}=\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, \ldots\right\}=\{-1,3,7,11,15, \ldots\}
$$

2. Let $a=7$ and $d=-3$:

$$
\left\{t_{n}\right\}=\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, \ldots\right\}=\{7,4,1,-2,-5, \ldots\}
$$

3. Let $a=1$ and $\mathrm{d}=2$:

$$
\left\{u_{n}\right\}=\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, \ldots\right\}=\{1,3,5,7,9, \ldots\}
$$

Strings

Definition: A string is a finite sequence of characters from a finite set (an alphabet).

- Sequences of characters or bits are important in computer science.
- The empty string is represented by λ.
- The string abcde has length 5.

Recurrence Relations

Definition: A recurrence relation for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms of the sequence, namely, $a_{0}, a_{1}, \ldots, a_{n-1}$, for all integers n with $n \geq n_{0}$, where n_{0} is a nonnegative integer.

- A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.
- The initial conditions for a sequence specify the terms that precede the first term where the recurrence relation takes effect.

Questions about Recurrence Relations

Example 1: Let $\left\{a_{n}\right\}$ be a sequence that satisfies the recurrence relation $a_{n}=a_{n-1}+3$ for $n=1,2,3,4, \ldots$. and suppose that $a_{0}=2$. What are a_{1}, a_{2} and a_{3} ? [Here $a_{0}=2$ is the initial condition]

Solution: We see from the recurrence relation that

$$
\begin{aligned}
& a_{1}=a_{0}+3=2+3=5 \\
& a_{2}=5+3=8 \\
& a_{3}=8+3=11
\end{aligned}
$$

Questions about Recurrence Relations

Example 2: Let $\left\{a_{n}\right\}$ be a sequence that satisfies the recurrence relation $a_{n}=a_{n-1}-a_{n-2}$ for $n=2,3,4, \ldots$ and suppose that $a_{0}=3$ and $a_{1}=5$.
What are a_{2} and a_{3} ?
[Here the initial conditions are $a_{0}=3$ and $a_{1}=5$.]

Solution: We see from the recurrence relation that

$$
\begin{aligned}
& a_{2}=a_{1}-a_{0}=5-3=2 \\
& a_{3}=a_{2}-a_{1}=2-5=-3
\end{aligned}
$$

Sequences Table

TABLE 1 Some Useful Sequences.

nth Term	First 10 Terms
n^{2}	$1,4,9,16,25,36,49,64,81,100, \ldots$
n^{3}	$1,8,27,64,125,216,343,512,729,1000, \ldots$
n^{4}	$1,16,81,256,625,1296,2401,4096,6561,10000, \ldots$
2^{n}	$2,4,8,16,32,64,128,256,512,1024, \ldots$
3^{n}	$3,9,27,81,243,729,2187,6561,19683,59049, \ldots$
$n!$	$1,2,6,24,120,720,5040,40320,362880,3628800, \ldots$
f_{n}	$1,1,2,3,5,8,13,21,34,55,89, \ldots$

Summations

- Sum of the terms

$$
a_{m}, a_{m+1}, \ldots, a_{n}
$$

- The notation:

$$
\sum_{j=m}^{n} a_{j} \quad \sum_{j=m}^{n} a_{j} \quad \sum_{m \leq j \leq n} a_{j}
$$

represents

$$
a_{m}+a_{m+1}+\cdots+a_{n}
$$

- The variable j is called the index of summation. It runs through all the integers starting with its lower limit m and ending with its upper limit n.

Summations(cont.)

- More generally for a set S :

$$
\sum_{j \in S} a_{j}
$$

- Examples:

$$
\begin{gathered}
r^{0}+r^{1}+r^{2}+r^{3}+\cdots+r^{n}=\sum_{0}^{n} r^{j} \\
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots=\sum_{1}^{\infty} \frac{1}{i}
\end{gathered}
$$

$$
\text { If } S=\{2,5,7,10\} \text { then } \sum_{j \in S} a_{j}=a_{2}+a_{5}+a_{7}+a_{10}
$$

Index of Summation

- Suppose we have the sum $\sum_{j=1}^{5} j^{2}$, Indexes are 1, 2, 3,4,5. $\sum_{j=1}^{5} j^{2}=\sum_{k=0}^{4}(k+1)^{2}$
- Both sums are $1+4+9+16+25=55$

Double Summation

Nested loops in computer programs. An example: $\sum_{i=1}^{4} \sum_{j=1}^{3} i j$.
Evaluation of the double sum:

$$
\begin{aligned}
\sum_{i=1}^{4} \sum_{j=1}^{3} i j & =\sum_{i=1}^{4}(i+2 i+3 i) \\
& =\sum_{i=1}^{4} 6 i
\end{aligned}
$$

- $6+12+18+24=60$

Summation Formulas

TABLE 2 Some Useful Summation Formulae.

Sum	Closed Form
$\sum_{k=0}^{n} a r^{k}(r \neq 0)$	$\frac{a r^{n+1}-a}{r-1}, r \neq 1$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^{2}$	$\frac{n(n+1)(2 n+1)}{6}$
$\sum_{k=1}^{n} k^{3}$	$\frac{n^{2}(n+1)^{2}}{4}$
$\sum_{k=0}^{\infty} x^{k},\|x\|<1$	$\frac{1}{1-x}$
$\sum_{k=1}^{\infty} k x^{k-1},\|x\|<1$	$\frac{1}{(1-x)^{2}}$

