Ceng 124 Discrete Structures

2018-2019 Spring Semester

Topics

2.3 Functions
2.4 Sequences and Summations

Topics

► 2.3 Functions

- Definition of a Function.
 - Domain, Codomain
 - Image, Preimage
- Injection, Surjection, Bijection
- Inverse Function
- Function Composition
- Graphing Functions
- Floor, Ceiling Functions

2.4 Sequences and Summations

- Sequences.
 - Geometric Progression, Arithmetic Progression
- Recurrence Relations
- Summations

Functions

- ▶ Definition: Let A and B be nonempty sets. A function f from A to B, denoted f: A → B is an assignment of each element of A to exactly one element of B. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.
- Functions are sometimes called *mappings* or *transformations*.

Domain-Codomain-Image-Preimage

Given a function $f: A \rightarrow B$:

- We say f maps A to B or
 - f is a mapping from A to B.
- A is called the *domain* of *f*.
- *B* is called the *codomain* of *f*.
- $\blacktriangleright \quad \text{If } f(a) = b,$
 - then b is called the image of a under f.
 - ▶ *a* is called the *preimage* of *b*.
- The range of f is the set of all images of points in **A** under f. We denote it by f(A).
- Two functions are equal when they have the same domain, the same codomain and map each element of the domain to the same element of the codomain.

Example

- Let G is the function name
- Domain of the set G
 - {Adams, Chou, Goodfriend, Rodriguez, Stevens}
- Codomain is the set {A,B,C,D, F}.
- The range of G is the set {A,B,C, F},

because each grade except D is assigned to some student.

Representing Functions

Functions are specified in many different ways.

- An explicit statement of the assignments, as in Figure.
- A formula, such as f(x) = x + 1, to define a function.

A computer program to specify a function.

Functions in Programming Languages

The domain and codomain of functions are often specified in programming languages. For instance, the Java statement

int floor(float real) {...}

and the C++ function statement

int function (float x) {...}

both tell us that the *domain* of the floor function is the set of *real numbers* (represented by floating point numbers) and its *codomain* is the set of *integers*.

One-to-One Function

Definition: A function f is said to be one-to-one, or injective, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. A function is said to be an injection if it is one-to-one.

An one-to-one function

Onto Function

• Definition: A function f from A to B is called *onto* or *surjective*, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b A function f is called a surjection if it is onto.

An onto Function

One-to-one Correspondence

Definition: A function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto (surjective and injective).

Different Types of Correspondences

Inverse Function

• Definition: Let f be a bijection from A to B. Then the inverse of f, denoted f^{-1} , is the function from B to A defined as $f^{-1}(y) = x$ iff f(x) = y

Inverse Question

Example: Let f be the function from $\{a, b, c\}$ to $\{1, 2, 3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1. Is f invertible and if so what is its inverse?

Solution: The function *f* is invertible because it is a one-to-one correspondence. The inverse function f^{-1} reverses the correspondence given by *f*, so $f^{-1}(1) = c$, $f^{-1}(2) = a$, and $f^{-1}(3) = b$.

Composition

• **Definition**: Let $f: B \to C$, $g: A \to B$. The composition of f with g, denoted $f \circ g$ is the function from A to C defined by

$$f \circ g(x) = f(g(x))$$

Composition Question

Example: Let f and g be functions from the set of integers to the set of integers defined by f(x) = 2x + 3 and g(x) = 3x + 2.

What is the composition of f and g, and also the composition of g and f?

Solution:

fog (x)=
$$f(g(x)) = f(3x + 2) = 2(3x + 2) + 3 = 6x + 7$$

gof (x)= $g(f(x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11$

Graphs of Functions

▶ Let f be a function from the set A to the set B. The graph of the function f is the set of ordered pairs $\{(a,b) \mid a \in A \text{ and } f(a) = b\}$.

Graph of f(n)=2n+1 from Z to Z

Graph of $f(x)=x^2$ from Z to Z

Floor and Ceiling Functions

- Floor and Ceiling functions are two important functions in discrete mathematics.
- The *floor* function, denoted $f(x) = \lfloor x \rfloor$ is the largest integer less than or equal to x.

 \blacktriangleright The *ceiling* function, denoted $\ f(x) = \lceil x \rceil$

is the smallest integer greater than or equal to x

$$\lceil 3.5 \rceil = 4 \qquad \lfloor 3.5 \rfloor = 3$$

Examples:

$$\left[-1.5\right] = -1 \qquad \left\lfloor-1.5\right\rfloor = -2$$

Graphs of Floor and Ceiling Functions

Graph of (a) Floor and (b) Ceiling Functions

Question1

- Data stored on a computer disk or transmitted over a network are usually represented as a string of bytes. Each byte is made up of 8 bits. How many bytes are required to encode 100 bits of data?
 - Solution: [100/8] = [12.5] = 13 bytes are required.

Question2

In synchronous transfer mode(ATM) (a communication protocol used on backbone networks), data are organized into cells of 53 bytes. How many ATM cells can be transmitted in 1 minute over a connection that transmits data at the rate of 500 kilobits per second?

Solution: In 1 minute, this connection can transmit

500.000 * 60=30.000.000 bits

Each ATM cell is 53 bytes long, means that it is 53*8=424 bits long. [30,000,000/424] = 70,754 ATM cells can be transmitted in 1 minute over a 500 kilobit per sec connection.

2.4 Sequences and Summations

- Sequences are ordered lists of elements.
 - ▶ 1, 2, 3, 5, 8
 - ▶ 1, 3, 9, 27, 81,
- Used in discrete mathematics.
- An important data structure in computer science.
- We will introduce the terminology to represent sequences and sums of the terms in the sequences.

Sequences

Definition: A sequence is a function from a subset of the integers (usually either the set {0, 1, 2, 3, 4,} or {1, 2, 3, 4,} or {1, 2, 3, 4,}) to a set S.

The notation a_n is used to denote the image of the integer n. We can think of a_n as the equivalent of f(n) where f is a function from {0,1,2,....} to S. We call a_n a term of the sequence.

Sequences (cont.)

Example: Consider the sequence $\{a_n\}$ where

$$a_n = \frac{1}{n}$$
 $\{a_n\} = \{a_1, a_2, a_3, \ldots\}$

 $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \dots$

Geometric Progression

Definition: A *geometric progression* is a sequence of the form:

 $a, ar, ar^2, \ldots, ar^n, \ldots$

where the *initial term a* and the *common ratio r* are real numbers.

Examples:

1. Let
$$a = 1$$
 and $r = -1$. Then:

$$\{b_n\} = \{b_0, b_1, b_2, b_3, b_4, \dots\} = \{1, -1, 1, -1, 1, \dots\}$$

Let
$$a = 2$$
 and $r = 5$. Then:
 $\{c_n\} = \{c_0, c_1, c_2, c_3, c_4, \dots\} = \{2, 10, 50, 250, 1250, \dots\}$

2. Let
$$a = 6$$
 and $r = 1/3$. Then:
 $\{d_n\} = \{d_0, d_1, d_2, d_3, d_4, \dots\} = \{6, 2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \dots\}$

Arithmetic Progression

Definition: A *arithmetic progression* is a sequence of the form:

 $a, a+d, a+2d, \ldots, a+nd, \ldots$

where the *initial term a* and the *common difference d* are real numbers. **Examples:**

1. Let
$$a = -1$$
 and $d = 4$:
 $\{s_n\} = \{s_0, s_1, s_2, s_3, s_4, \dots\} = \{-1, 3, 7, 11, 15, \dots\}$
2. Let $a = 7$ and $d = -3$:
 $\{t_n\} = \{t_0, t_1, t_2, t_3, t_4, \dots\} = \{7, 4, 1, -2, -5, \dots\}$

3. Let a = 1 and d = 2:

$$\{u_n\} = \{u_0, u_1, u_2, u_3, u_4, \dots\} = \{1, 3, 5, 7, 9, \dots\}$$

Strings

Definition: A *string* is a finite sequence of characters from a finite set (an alphabet).

- Sequences of characters or bits are important in computer science.
- The *empty string* is represented by λ .
- The string *abcde* has *length* 5.

Recurrence Relations

Definition: A recurrence relation for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence, namely, a_0 , a_1 , ..., a_{n-1} , for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer.

- A sequence is called a *solution* of a recurrence relation if its terms satisfy the recurrence relation.
- The *initial conditions* for a sequence specify the terms that precede the first term where the recurrence relation takes effect.

Questions about Recurrence Relations

Example 1: Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} + 3$ for n = 1,2,3,4,... and suppose that $a_0 = 2$. What are a_1 , a_2 and a_3 ? [Here $a_0 = 2$ is the initial condition]

Solution: We see from the recurrence relation that

5

$$a_1 = a_0 + 3 = 2 + 3 =$$

 $a_2 = 5 + 3 = 8$
 $a_3 = 8 + 3 = 11$

Questions about Recurrence Relations

Example 2: Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} - a_{n-2}$ for n = 2,3,4,... and suppose that $a_0 = 3$ and $a_1 = 5$. What are a_2 and a_3 ?

[Here the initial conditions are $a_0 = 3$ and $a_1 = 5$.]

Solution: We see from the recurrence relation that

$$a_2 = a_1 - a_0 = 5 - 3 = 2$$

 $a_3 = a_2 - a_1 = 2 - 5 = -3$

Sequences Table

TABLE 1 Some Useful Sequences.		
nth Term	First 10 Terms	
n^2	1, 4, 9, 16, 25, 36, 49, 64, 81, 100,	
n^3	1, 8, 27, 64, 125, 216, 343, 512, 729, 1000,	
n^4	1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000,	
2^n	2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,	
3 ⁿ	3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049,	
n!	$1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, \ldots$	
f_n	1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,	

Summations

Sum of the terms

n

$$a_m, a_{m+1}, \ldots, a_n$$

The notation:

$$\sum_{j=m}^{n} a_j \quad \sum_{j=m}^{n} a_j \quad \sum_{m \le j \le n}^{m} a_j$$

represents

$$a_m + a_{m+1} + \dots + a_n$$

The variable j is called the index of summation. It runs through all the integers starting with its lower limit m and ending with its upper limit n.

Summations(cont.)

More generally for a set S:

 $\sum_{j \in S} a_j$

Examples: $r^{0} + r^{1} + r^{2} + r^{3} + \dots + r^{n} = \sum_{0}^{n} r^{j}$ $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = \sum_{1}^{\infty} \frac{1}{i}$ If $S = \{2, 5, 7, 10\}$ then $\sum_{j \in S} a_{j} = a_{2} + a_{5} + a_{7} + a_{10}$

Index of Summation

Suppose we have the sum
$$\sum_{j=1}^{5} j^2$$
, Indexes are 1,2,3,4,5.

$$\sum_{j=1}^{5} j^2 = \sum_{k=0}^{4} (k+1)^2$$

Both sums are 1+4+9+16+25 = 55

Double Summation

Nested loops in computer programs. An example: $\sum \sum ij$.

- 3

i=1 j=1

4

Evaluation of the double sum:

$$\sum_{i=1}^{4} \sum_{j=1}^{3} ij = \sum_{i=1}^{4} (i+2i+3i)$$
$$= \sum_{i=1}^{4} 6i$$

► 6+12+18+24 = 60

Summation Formulas

TABLE 2 Some Useful Summation Formulae.		
Sum	Closed Form	
$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r \neq 1$	
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$	
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$	
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$	
$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$	
$\sum_{k=1}^{\infty} kx^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$	