Ceng 124 Discrete Structures
 2018-2019 Spring Semester

Topics

- 9.1 Relations
- 9.2 n-ary Relations

Topics

- 9.1 Relations and Their Properties
- Relations:
- Reflexive
- Symmetric and Antisymmetric
- Transitive
- Combining Relations
- 9.2 n -ary Relations and Their Properties
- n -ary relations
- Databases and Relations
- Operations on n-ary Relations

Introduction

- Relationship between a program and its variables.
- Integers that are congruent modulo k .
- Pairs of cities linked by airline flights in a network.

Relations and Their Properties

- If we want to describe a relationship between elements of two sets A and B, we can use ordered pairs with their first element taken from A and their second element taken from B.
- Since this is a relation between two sets, it is called a binary relation.
\Rightarrow Definition: Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

Relations and Their Properties (cont.)

- Notation:

$$
\begin{aligned}
& a R b \Leftrightarrow(a, b) \in R \\
& a \not a b \Leftrightarrow(a, b) \notin R
\end{aligned}
$$

Relations and Their Properties (cont.)

- Example:
$A=$ set of all districts
$B=$ set of the all cities in the Turkey.
Define the relation R by specifying that (a, b) belongs to R if district a is in city b .
(Etimesgut, Ankara)
(Alanya, Antalya) $\quad \rightarrow \quad$ are in R.
(Üsküdar, İstanbul)

Functions as Relations

\Rightarrow The graph of a function f is the set of ordered pairs (a, b) such that $b=f(a)$

- The graph of f is a subset of $A \times B \Rightarrow$ it is a relation from A to B
- Conversely, if R is a relation from A to B such that every element in A is the first element of exactly one ordered pair of R, then a function can be defined with R as its graph.

Relations on a Set

- Definition: A relation on the set A is a relation from A to A .
- In other words, a relation on the set A is a subset of $A \times A$.
- Example: Let $\mathrm{A}=\{1,2,3,4\}$. Which ordered pairs are in the relation $R=\{(a, b) \mid a \operatorname{divides} b\}$?
- Solution Since (a, b) is in R if and only if a and b are positive integers not exceeding 4 such that a divides b
$R=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$

Properties of Relations

- Reflexive
- Symmetric
- Antisymmetric
- Transitive

Reflexive

- Definition: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.
- Example: Consider the following relations on $\{1,2,3,4\}$.

```
R1 = {(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)}
R2 = {(1,1), (1,2), (2,1)}
R3 ={(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (3,4), (4,1), (4,4)}
R4 ={(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)}
R5 ={(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)}
R6 = {(3,4)}
```

Which of these relations are reflexive?

Reflexive (cont.)

- Solution: R3 and R5: reflexive both contain all pairs of the form $(a, a):(1,1),(2,2),(3,3)(4,4)$.
- R1, R2, R4 and R6: not reflexive not contain all of these ordered pairs. $(3,3)$ is not in any of these relations.

Symmetric - Antisymmetric

- Definitions:
- A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$.
- A relation R on a set A such that $(a, b) \in R$ and $(b, a) \in R$ only if $\mathrm{a}=\mathrm{b}$, for all $\mathrm{a}, \mathrm{b} \in \mathrm{A}$, is called antisymmetric.

Example

- Consider the following relations on $\{1,2,3,4\}$. Which of the realtions are symmetric and which are antisymmetric?
- $R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}$
$R_{2}=\{(1,1),(1,2),(2,1)\}$
$\mathbf{R}_{3}=\{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}$
$R_{4}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$
$R_{5}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}$
$\mathbf{R}_{6}=\{(3,4)\}$
- $\mathrm{R}_{2}, \mathrm{R}_{3}$: symmetric \Leftarrow each case (b, a) belongs to the relation whenever (a, b) does.
For R_{2} : only thing to check that both $(1,2),(2,1)$ belong to the relation
For R_{3} : it is necessary to check that both $(1,2),(2,1)$ belong to the relation.
- R_{4}, R_{5} and R_{6} : antisymmetric \Leftarrow for each of these relations there is no pair of elements a and b with
$\mathrm{a} \neq \mathrm{b}$ such that both (a, b) and (b, a) belong to the relation.

Transitive

- Definition: A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in R$.

Example

- Which of the following relations are transitive?
- $\mathbf{R}_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}$
$\mathbf{R}_{2}=\{(1,1),(1,2),(2,1)\}$
$R_{3}=\{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}$
$\mathbf{R}_{4}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$
$R_{5}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}$
$\mathbf{R}_{6}=\{(3,4)\}$
- verify that if (a, b) and (b, c) belong to this relation then (a, c) belongs also to the relation
- R_{1} : not transitive $\Leftarrow(3,4)$ and $(4,1)$ belong to R_{1}, but $(3,1)$ does not.
- R_{2} : not transitive $\Leftarrow(2,1)$ and $(1,2)$ belong to R_{2}, but $(2,2)$ does not.
- R_{3} : not transitive $\Leftarrow(4,1)$ and $(1,2)$ belong to R_{3}, but $(4,2)$ does not.
- R_{4}, R_{5}, R_{6} : transitive $\Leftarrow R_{4}$ transitive since $(3,2)$ and $(2,1),(4,2)$ and $(2,1)$, $(4,3)$ and $(3,1)$, and $(4,3)$ and $(3,2)$ are the only such sets of pairs, and $(3,1)$, $(4,1)$ and $(4,2)$ belong to R_{4}. Same reasoning for R_{5} and R_{6}.

Combing Relations

- Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{1,2,3,4$,$\} . The relations$ $R_{1}=\{(1,1),(2,2),(3,3)\}$ and
$R_{2}=\{(1,1),(1,2),(1,3),(1,4)\}$ can be combined to obtain:

$$
\begin{aligned}
& R_{1} \cup R_{2}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)\} \\
& R_{1} \cap R_{2}=\{(1,1)\} \\
& R_{1}-R_{2}=\{(2,2),(3,3)\} \\
& R_{2}-R_{1}=\{(1,2),(1,3),(1,4)\}
\end{aligned}
$$

9.2 n-ary Relations and Their Properties

- Relationship among elements of more than 2 sets often arise: n-ary relations.
- There is a relationship involving the name of a student, student major, student grade point average.
- There is a relationship involving the airline, flight number, starting point, destination, departure time, arrival time.

n-ary Relations

\Rightarrow Definition: Let $A_{1}, A_{2}, \ldots, A_{n}$ be sets. An n-ary relation on these sets is a subset of $A_{1} \times A_{2} \times \ldots \times A_{n}$ where A_{i} are the domains of the relation, and n is called its degree.

- Example: Let R be the relation on $\mathrm{N} \times \mathrm{N} \times \mathrm{N}$ consisting of triples (a, b, c) where a, b, and c are integers with $a<b<c$. Then $(1,2,3) \in R$, but $(2,4,3) \notin R$. The degree of this relation is 3 . Its domains are equal to the set of integers.

Databases and Relations

- Relational database model has been developed for information processing
- A database consists of records, which are n-tuples made up of fields The fields contains information such as: Name, Student \#, Major, Grade
- The relational database model represents a database of records or n-ary relation
- The relation is R (Student-Name, Id-number, Major, GPA)

Examples of Records

- (Ackermann, 231455, Computer Science, 3.88)
(Adams, 888323, Physics, 3.45)
(Chou, 102147, Computer Science, 3.49)
(Goodfriend, 453876, Mathematics, 3.45)
(Rao, 678543, Mathematics, 3.90)
(Stevens, 786576, Psychology, 2.99)

TABLE 1 Students.			
Siudent_name	ID_number	Major	GPA
Ackermann	231455	Computer Science	3.88
Adams	888323	Physics	3.45
Chou	102147	Computer Science	3.49
Goodfriend	453876	Mathematics	3.45
Rao	678543	Mathematics	3.90
Stevens	786576	Psychology	2.99

- Each column of the table corresponds to an attribute of the database.
- A domain of an n-ary relation is called a primary key when the value of the n-tuple from this domain determines the n-tuple.

Operations on n-ary Relations

- Selection Operator: Let R be an n -ary relation and C a condition that elements in R may satisfy. Then the selection operator Sc maps n-ary relation R to the n-ary relation of all n-tuples from R that satisfy the condition C.

Example

- To find the records, the condition Major="Computer Science" The result is the two 4-tuples:
(Ackermann, 231455, Computer Science, 3.88)
(Chou, 102147, Computer Science, 3.49).
- To find the records, the condition GPA > 3.5. The result is the two 4-tuples:
(Ackermann, 231455, Computer Science, 3.88)

TABLEE 1 Students.			
Student_name	ID_number	Major	GPA
Ackermann	231455	Computer Science	3.88
Adams	888323	Physics	3.45
Chou	102147	Computer Science	3.49
Goodfriend	453876	Mathematics	3.45
Ras	678543	Mathematics	3.90
Stevens	786576	Psychology	2.99

(Rao, 678543, Mathematics, 3.90).

- To find the records, the condition (Major="Computer Science" \wedge GPA > 3.5). The result consists of the single 4-tuple:
(Ackermann, 231455, Computer Science, 3.88).

Operations on n-ary Relations (cont.)

- Projection: The projection $\boldsymbol{P}_{\boldsymbol{i}_{1}, \boldsymbol{i}_{2}}, \ldots, \boldsymbol{i}_{\boldsymbol{m}}$ maps the n-tuple (a1, a2, ..., an) to the m-tuple $\left(\boldsymbol{a}_{\boldsymbol{i}_{\boldsymbol{1}}}, \boldsymbol{a}_{\boldsymbol{i}_{\boldsymbol{2}}}, \ldots, \boldsymbol{a}_{\boldsymbol{i}_{\boldsymbol{m}}}\right)$ where $\mathrm{m}<=\mathrm{n}$.

Example

- What relation results when the projection $P 1,4$ is applied to the relation in Table 1?
- Solution: When the projection P1,4 is used, the second and third columns of the table are deleted, and pairs representing student names and grade point averages are obtained. Table 2 displays the results of this projection.

$\|l\| l\|l\|$			
TABLE 1 Students.			
Sholent_mame	ID_number	Major	GPA
Ackermann	231455	Computer Science	3.88
Adams	888323	Physics	3.45
Chou	102147	Computer Science	3.49
Goodfriend	453876	Mathematics	3.45
Rao	678543	Mathematics	3.90
Stevens	786576	Psychology	2.99

TABLE 2 GPAs.	
Student_name	$\boldsymbol{G P A}$
Ackermann	3.88
Adams	3.45
Chou	3.49
Goodfriend	3.45
Rao	3.90
Stevens	2.99

Operations on n-ary Relations (cont.)

- Join: Let R be a relation of degree m and S a relation of degree n. The join $J p(R, S)$, where $p<=m$ and $p<=n$, is a relation of degree $m+n-p$ that consists of all ($m+n-p$)-tuples (a1, a2, ..., am-p, c1, c2, ..., cp, b1, b2, ..., bn-p), where the m-tuple ($\mathrm{a} 1, \mathrm{a} 2, \ldots$, am-p, c1, c2, ... $c p$) belongs to R and the n-tuple (c1, c2, ... cp, b1, b2, ..., bn-p) belongs to S.

Example

- What relation results when the join operator J 2 is used to combine the relation displayed in Tables 5 and 6?

TABLE 5	Teaching_assignments.	
		Course_ number
Professor	Department	335
Cruz	Zoology	412
Cruz	Zoology	501
Farber	Psychology	617
Farber	Psychology	544
Grammer	Physics	551
Grammer	Physics	518
Rosen	Computer Science	575
Rosen	Mathematics	

Department	Course number	Room	Time
Computer Science	518	N521	2:00 P.M.
Mathematics	575	N502	3:00 P.M.
Mathematics	611	N521	4:00 P.M.
Physics	544	B505	4:00 P.M.
Psychology	501	A100	3:00 P.M.
Psychology	617	A110	11:00 A.M.
Zoology	335	A100	9:00 A.M.
Zoology	412	A100	8:00 A.M.

Solution

The join $J 2$ produces the relation shown in Table 7.

TABLE 7 Teaching_schedule.				
Professor	Department	Course_number	Room	Time
Cruz	Zoology	335	A100	9:00 A.M.
Cruz	Zoology	412	A100	8:00 A.M.
Farber	Psychology	501	A100	3:00 P.M.
Farber	Psychology	617	A110	11:00 A.M.
Grammer	Physics	544	B505	4:00 P.M.
Rosen	Computer Science	518	N521	2:00 P.M.
Rosen	Mathematics	575	N502	3:00 P.M.

SQL-n-ary Relations

- The SQL statement

SELECT Professor, Time
FROM Teaching_assignments, Class_schedule
WHERE Department='Mathematics'

- is used to find the projection P1,5 of the 5 -tuples in the database (shown in Table 7), which is the join J2 of the Teaching_assignments and Class_schedule databases in Tables 5 and 6, respectively,
- which satisfy the condition: Department = Mathematics. The output would consist of the single 2-tuple (Rosen, 3:00 p.m.). The SQL FROM clause is used here to find the join of two different databases.

