Ceng 124 Discrete Structures

2018-2019 Spring Semester

by Sibel T. Özyer, Spring 2019

Topics

9.1 Relations9.2 n-ary Relations

by Sibel T. Özyer, Spring 2019

Topics

▶ 9.1 Relations and Their Properties

- Relations:
 - Reflexive
 - Symmetric and Antisymmetric
 - Transitive
 - Combining Relations

9.2 n-ary Relations and Their Properties

- n-ary relations
- Databases and Relations
- Operations on n-ary Relations

Introduction

Relationship between a program and its variables.

Integers that are congruent modulo k.

> Pairs of cities linked by airline flights in a network.

Relations and Their Properties

- If we want to describe a relationship between elements of two sets A and B, we can use ordered pairs with their first element taken from A and their second element taken from B.
- Since this is a relation between two sets, it is called a binary relation.
- Definition: Let A and B be sets. A binary relation from A to B is a subset of A x B.

Relations and Their Properties (cont.)

Relations and Their Properties (cont.)

Example:

A = set of all districts

B = set of the all cities in the Turkey.Define the relation R by specifying that (a, b)belongs to R if district a is in city b.

(Etimesgut, Ankara)
(Alanya , Antalya) →
(Üsküdar, İstanbul)

are in R.

by Sibel T. Özyer, Spring 2019

Functions as Relations

- The graph of a function f is the set of ordered pairs (a, b) such that b = f(a)
- The graph of f is a subset of A x B \Rightarrow it is a relation from A to B
- Conversely, if R is a relation from A to B such that every element in A is the first element of exactly one ordered pair of R, then a function can be defined with R as its graph.

Relations on a Set

- Definition: A relation on the set A is a relation from A to A.
- In other words, a relation on the set A is a subset of A x A.
- Example: Let A = {1, 2, 3, 4}. Which ordered pairs are in the relation

 $R = \{(a, b) | a divides b\}$?

Solution Since (a, b) is in R if and only if a and b are positive integers not exceeding 4 such that a divides b

 $\mathsf{R} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

Properties of Relations

- Reflexive
- Symmetric
- Antisymmetric
- Transitive

Reflexive

- ▶ Definition: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.
- **Example:** Consider the following relations on {1, 2, 3, 4}.

```
 \begin{array}{l} \mathsf{R1} = \{(1,1), \ (1,2), \ (2,1), \ (2,2), \ (3,4), \ (4,1), \ (4,4)\} \\ \mathsf{R2} = \{(1,1), \ (1,2), \ (2,1)\} \\ \mathsf{R3} = \{(1,1), \ (1,2), \ (1,4), \ (2,1), \ (2,2), \ (3,3), \ (3,4), \ (4,1), \ (4,4)\} \\ \mathsf{R4} = \{(2,1), \ (3,1), \ (3,2), \ (4,1), \ (4,2), \ (4,3)\} \\ \mathsf{R5} = \{(1,1), \ (1,2), \ (1,3), \ (1,4), \ (2,2), \ (2,3), \ (2,4), \ (3,3), \ (3,4), \ (4,4)\} \\ \mathsf{R6} = \{(3,4)\} \end{array}
```

Which of these relations are reflexive?

Reflexive (cont.)

Solution: R3 and R5: reflexive

both contain all pairs of the form (a, a): (1,1), (2,2), (3,3) (4,4).

▶ R1, R2, R4 and R6: not reflexive

not contain all of these ordered pairs. (3,3) is not in any of these relations.

Symmetric - Antisymmetric

Definitions:

- A relation R on a set A is called symmetric if (b, a) \in R whenever (a, b) \in R, for all a, b \in A.
- A relation R on a set A such that (a, b) \in R and (b, a) \in R only if a = b, for all a, b \in A, is called antisymmetric.

Example

Consider the following relations on {1,2,3,4}. Which of the realtions are symmetric and which are antisymmetric?

```
 R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\} \\ R_2 = \{(1,1), (1,2), (2,1)\} \\ R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\} \\ R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\} \\ R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\} \\ R_6 = \{(3,4)\}
```

 \blacktriangleright R₂ , R₃: symmetric \Leftarrow each case (b, a) belongs to the relation whenever (a, b) does.

For R_2 : only thing to check that both (1,2) , (2,1) belong to the relation For R_3 : it is necessary to check that both (1,2) , (2,1) belong to the relation.

▶ R_4 , R_5 and R_6 : antisymmetric ← for each of these relations there is <u>no pair</u> of elements a and b with

 $a \neq b$ such that both (a, b) and (b, a) belong to the relation.

Transitive

Definition: A relation R on a set A is called transitive if whenever (a, b) ∈ R and (b,c) ∈ R, then (a, c) ∈ R, for all a, b, c ∈ R.

Example

Which of the following relations are transitive?

- $\begin{array}{l} \blacktriangleright \quad R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\} \\ R_2 = \{(1,1), (1,2), (2,1)\} \\ R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\} \\ R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\} \\ R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\} \\ R_6 = \{(3,4)\} \end{array}$
- verify that if (a, b) and (b, c) belong to this relation then (a, c) belongs also to the relation
- ▶ R_1 : not transitive \leftarrow (3,4) and (4,1) belong to R_1 , but (3,1) does not.
- ▶ R_2 : not transitive \leftarrow (2,1) and (1,2) belong to R_2 , but (2,2) does not.
- ▶ R_3 : not transitive \leftarrow (4,1) and (1,2) belong to R_3 , but (4,2) does not.
- ▶ R_4 , R_5 , R_6 : transitive $\leftarrow R_4$ transitive since (3,2) and (2,1), (4,2) and (2,1), (4,3) and (3,1), and (4,3) and (3,2) are the only such sets of pairs, and (3,1), (4,1) and (4,2) belong to R_4 . Same reasoning for R_5 and R_6 .

by Sibel T. Özyer, Spring 2019

Combing Relations

Let A = {1, 2, 3} and B = {1, 2, 3, 4, }. The relations R₁ = {(1,1), (2,2), (3,3)} and R₂ = {(1,1), (1,2), (1,3), (1,4)} can be combined to obtain: R₁ \cup R₂ = {(1,1), (1,2), (1,3), (1,4), (2,2), (3,3)} R₁ \cap R₂ = {(1,1)} R₁ \cap R₂ = {(1,1)} R₁ \cap R₂ = {(1,1)} R₁ \cap R₂ = {(1,2), (3,3)} R₂ \cap R₁ = {(1,2), (1,3), (1,4)}

9.2 n-ary Relations and Their Properties

- Relationship among elements of more than 2 sets often arise: n-ary relations.
- There is a relationship involving the name of a student, student major, student grade point average.
- There is a relationship involving the airline, flight number, starting point, destination, departure time, arrival time.

n-ary Relations

- Definition: Let A₁, A₂, ..., A_n be sets. An n-ary relation on these sets is a subset of A₁ x A₂ x....x A_n where A_i are the domains of the relation, and n is called its degree.
- Example: Let R be the relation on N x N x N consisting of triples (a, b, c) where a, b, and c are integers with a<b<c. Then (1,2,3) ∈ R, but (2,4,3) ∉ R. The degree of this relation is 3. Its domains are equal to the set of integers.

Databases and Relations

- Relational database model has been developed for information processing
- A database consists of records, which are n-tuples made up of fields The fields contains information such as: Name, Student #, Major, Grade
- The relational database model represents a database of records or n-ary relation
- The relation is R (Student-Name, Id-number, Major, GPA)

Examples of Records

(Ackermann, 231455, Computer Science, 3.88)

(Adams, 888323, Physics, 3.45)
(Chou, 102147, Computer Science, 3.49)
(Goodfriend, 453876, Mathematics, 3.45)
(Rao, 678543, Mathematics, 3.90)
(Stevens, 786576, Psychology, 2.99)

TABLE 1 Students.				
Student_name	ID_number	Major	GPA	
Ackermann	231455	Computer Science	3.88	
Adams	888323	Physics	3.45	
Chou	102147	Computer Science	3.49	
Goodfriend	453876	Mathematics	3.45	
Rao	678543	Mathematics	3.90	
Stevens	786576	Psychology	2.99	

- Each column of the table corresponds to an *attribute* of the database.
- A domain of an *n*-ary relation is called a *primary key* when the value of the *n*-tuple from this domain determines the *n*-tuple.

Operations on n-ary Relations

Selection Operator: Let R be an n-ary relation and C a condition that elements in R may satisfy. Then the selection operator Sc maps n-ary relation R to the n-ary relation of all n-tuples from R that satisfy the condition C.

Example

To find the records, the condition Major="Computer Science" The result is the two 4-tuples:
TABLE 1 Students.

(Ackermann, 231455, Computer Science, 3.88)

(Chou, 102147, Computer Science, 3.49).

To find the records, the condition GPA > 3.5. The result is the two 4-tuples:

(Ackermann, 231455, Computer Science, 3.88)

(Rao, 678543, Mathematics, 3.90).

(Ackermann, 231455, Computer Science, 3.88).

	TABLE 1 Stud	1 Students.		
	Student_name	ID_number	Major	GPA
	Ackermann	231455	Computer Science	3.88
	Adams	888323	Physics	3.45
e	Chou	102147	Computer Science	3.49
	Goodfriend	453876	Mathematics	3.45
	Rao	678543	Mathematics	3.90
	Stevens	786576	Psychology	2.99

Operations on n-ary Relations (cont.)

Projection: The projection $P_{i_1,i_2,...,i_m}$ maps the n-tuple (a1, a2, ..., an) to the m-tuple $(a_{i_1}, a_{i_2}, ..., a_{i_m})$ where m <= n.</p>

Example

- What relation results when the projection P1,4 is applied to the relation in Table 1?
- Solution: When the projection P1,4 is used, the second and third columns of the table are deleted, and pairs representing student names and grade point averages are obtained. Table 2 displays the results of this projection.

TABLE 1 Students.				
Student_name	ID_number	Major	GPA	
Ackermann	231455	Computer Science	3.88	
Adams	888323	Physics	3.45	
Chou	102147	Computer Science	3.49	
Goodfriend	453876	Mathematics	3.45	
Rao	678543	Mathematics	3.90	
Stevens	786576	Psychology	2.99	

TABLE 2 GPAs.			
Student_name	GPA		
Ackermann	3.88		
Adams	3.45		
Chou	3.49		
Goodfriend	3.45		
Rao	3.90		
Stevens	2.99		

Operations on n-ary Relations (cont.)

Join: Let R be a relation of degree m and S a relation of degree n. The join Jp(R,S), where p <= m and p <= n, is a relation of degree m + n - p that consists of all (m + n - p)-tuples (a1, a2, ..., am-p, c1, c2, ..., cp, b1, b2, ..., bn-p), where the m-tuple (a1, a2, ..., am-p, c1, c2, ..., cp) belongs to R and the n-tuple (c1, c2, ..., cp, b1, b2, ..., bn-p) belongs to S.</p>

Example

What relation results when the join operator J2 is used to combine the relation displayed in Tables 5 and 6?

TABLE 5 Teaching_assignments.			
Professor	Department	Course_ number	
Cruz	Zoology	335	
Cruz	Zoology	412	
Farber	Psychology	501	
Farber	Psychology	617	
Grammer	Physics	544	
Grammer	Physics	551	
Rosen	Computer Science	518	
Rosen	Mathematics	575	

Department	Course_ number	Room	Time
Computer Science	518	N521	2:00 р.м
Mathematics	575	N502	3:00 р.м
Mathematics	611	N521	4:00 p.m
Physics	544	B505	4:00 р.м
Psychology	501	A100	3:00 р.м
Psychology	617	A110	11:00 a.m
Zoology	335	A100	9:00 a.m
Zoology	412	A100	8:00 A.M

Solution

The join J2 produces the relation shown in Table 7.

TABLE 7 Teaching_schedule.				
Professor	Department	Course_number	Room	Time
Cruz	Zoology	335	A100	9:00 a.m.
Cruz	Zoology	412	A100	8:00 a.m.
Farber	Psychology	501	A100	3:00 р.м.
Farber	Psychology	617	A110	11:00 а.м.
Grammer	Physics	544	B505	4:00 р.м.
Rosen	Computer Science	518	N521	2:00 р.м.
Rosen	Mathematics	575	N502	3:00 р.м.

SQL-n-ary Relations

The SQL statement

SELECT Professor, Time

FROM Teaching_assignments, Class_schedule

WHERE Department='Mathematics'

- is used to find the projection P1,5 of the 5-tuples in the database (shown in Table 7), which is the join J2 of the Teaching_assignments and Class_schedule databases in Tables 5 and 6, respectively,
- which satisfy the condition: Department = Mathematics. The output would consist of the single 2-tuple (Rosen, 3:00 p.m.). The SQL FROM clause is used here to find the join of two different databases.