Ceng 124 Discrete Structures
 2018-2019 Spring Semester

Topics

- 9.3 Representing Relations
- using Matrices
- using Directed Graphs
- 9.5 Equivalence Relations

Introduction

- First way is to list the ordered pairs
- Second way is through matrices
- Third way is through direct graphs

Representing Relations using Matrices

- Suppose that R is a relation from $A=\{a 1, a 2, \ldots, a m\}$ to $B=\{b 1, b 2, \ldots, b n\}$.
- The relation R can be represented by the matrix $M_{R}=[m i j]$, where

$$
m_{i j}= \begin{cases}1 & \text { if }\left(a_{i}, b_{j}\right) \in R \\ 0 & \text { otherwise }\end{cases}
$$

- Generally, matrices are appropriate for the representation of relations in computer programs.

Example1

- Suppose that $A=\{1,2,3\}$ and $B=\{1,2\}$. Let R be the relation from A to B containing (a, b) if $a \in A, b \in B$, and $a>b$. What is the matrix representing R if $a 1=1, a 2=2$, and $a 3=3$, and $b 1=1$ and $b 2=2$?
- Solution: Because $R=\{(2,1),(3,1),(3,2)\}$, the matrix for R is

$$
\mathbf{M}_{R}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
1 & 1
\end{array}\right]
$$

The 1 s in $M R$ show that the pairs $(2,1),(3,1)$, and $(3,2)$ belong to R. The 0 s show that no other pairs belong to R.

Example2

- Let $A=\{a 1, a 2, a 3\}$ and $B=\{b 1, b 2, b 3, b 4, b 5\}$. Which ordered pairs are in the relation R represented by the matrix

$$
\mathbf{M}_{R}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1
\end{array}\right] ?
$$

- Because R consists of those ordered pairs ($a i, b j$) with $m i j=1$, it follows that
- $R=\{(a 1, b 2),(a 2, b 1),(a 2, b 3),(a 2, b 4),(a 3, b 1),(a 3, b 3),(a 3, b 5)\}$.

Reflexive Relation on Zero-One Matrix

- A relation R on A is reflexive if $(a, a) \in R$ whenever $a \in A$. Thus, R is reflexive if and only if (ai, ai) $\in R$ for $i=1,2, \ldots, n$. Hence, R is reflexive if and only if $m i i=1$, for $i=1,2, \ldots, n$. In other words, R is reflexive if all the elements on the main diagonal of $M R$ are equal to 1 .

Figure 1: Zero-One Matrix for a Reflexive Relation

Symmetric Relation on
 Zero-One Matrix

- R is symmetric if and only if $m j i=1$ whenever $m i j=1$. This also means $m j i=0$ whenever $m i j=0$. Consequently, R is symmetric if and only if $m i j=m j i$, for all pairs of integers i and j with $i=1,2, \ldots, n$ and $j=1,2, \ldots, n$.
- Also the definition of the transpose of a matrix, we see that R is symmetric if and only if $\mathrm{MR}=(\mathrm{MR}) \mathrm{t}$.

Figure 2: Zero-One Matrix for a Symmetric Relation

Antisymmetric Relation on Zero-One Matrix

- The relation R is antisymmetric if and only if $(a, b) \in R$ and $(b, a) \in R$ imply that $a=b$. Consequently, the matrix of an antisymmetric relation has the property that if $m i j=1$ with $i=j$, then $m j i=0$. In other words, either $m i j=0$ or $m j i=0$ when $i=j$. The form of the matrix for an antisymmetric relation is illustrated in Figure 3.

Figure 3: Zero-One Matrix for a Antisymmetric Relation

Example1

- Suppose that the relation R on a set is represented by the matrix

$$
\mathbf{M}_{R}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Is R reflexive, symmetric, and/or antisymmetric?

Solution

- Because all the diagonal elements of this matrix are equal to $1, R$ is reflexive.
- Moreover, because $M R$ is symmetric, it follows that R is symmetric.
- It is also easy to see that R is not antisymmetric.

Representing Relations using Directed Graphs (Digraph)

A directed graph, or digraph, consists of a set V of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs). The vertex a is called the initial vertex of the edge (a, b), and the vertex b is called the terminal vertex of this edge.

An edge of the form (a, a) is represented using an arc from the vertex a back to itself. Such an edge is called a loop.

Sample of Directed Graphs

- The directed graph with vertices a, b, c, and d, and edges $(a, b),(a, d),(b, b),(b, d),(c, a),(c, b)$, and (d, b) is displayed in Figure 4.

Figure 4: A directed graph
Directed graphs give a visual display of information about relations.

Sample of Directed Graphs (cont.)

- The directed graph of the relation

$$
R=\{(1,1),(1,3),(2,1),(2,3),(2,4),(3,1),(3,2),(4,1)\}
$$ on the set $\{1,2,3,4\}$ is shown in Figure 5.

Figure 5: A directed graph

Question1

- What are the ordered pairs in the relation R represented by the directed graph shown in Figure 6?
- Solution: The ordered pairs (x, y) in the relation are $R=\{(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,3),(4,1),(4,3)\}$.

Figure 6: A directed graph

- Each of these pairs corresponds to an edge of the directed graph, with (2, 2) and $(3,3)$ corresponding to loops.

Question2

- Determine whether the relations for the directed graphs shown in Figure 7 are reflexive, symmetric, antisymmetric, and/or transitive.

Figure 7: The directed graph of the Relations R and S

Solutions of Question2

- Solution (a):

Reflexive: loops at every vertex of the directed graph of R.
Not Symmetric: an edge from a to $b(a, b)$ but not b to $a(b, a)$.
Not Antisymmetric: There are edges in both directions connecting b and c. (b,c) and (c,b).
Not Transitive: There is an edge from a to b and an edge from b to c, but no edge from a to c.

- Solution (b):

Not Reflexive: loops are not present at all the vertices of the directed graph of S. Symmetric and Not Antisymmetric: every edge between distinct vertices is accompanied by an edge in the opposite direction.

Not Transitive: because (c, a) and (a, b) belong to S, but (c, b) does not belong to S.

9.5 Equivalence Relations

A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.

Question1

- Let R be the relation on the set of real numbers such that $a R b$ if and only if $a-b$ is an integer. Is R an equivalence relation?
- Solution:
- Because $a-a=0$ is an integer for all real numbers a, a Ra for all real numbers a. Hence, R is reflexive.
- Now suppose that $a R b$. Then $a-b$ is an integer, so $b-a$ is also an integer. Hence, bRa. It follows that R is symmetric.
- If $a R b$ and $b R c$, then $a-b$ and $b-c$ are integers.

Therefore, $a-c=(a-b)+(b-c)$ is also an integer.
Hence, aRc. Thus, R is transitive.

- Consequently, R is an equivalence relation.

Question2

- Let $n=3$ and let S be the set of all bit strings. Then $s R 3 t$ either when $s=t$ or both s and t are bit strings of length 3 or more that begin with the same three bits. For instance, 01R301 and 00111R300101, but 01R3010 and 01011R301110.
- Show that for every set S of strings and every positive integer $n, R n$ is an equivalence relation on S.
- Solution: The relation $R n$ is reflexive because $s=s$, so that $s R n s$. If $s R n t$, and $t R n s$. We conclude that $R n$ is symmetric. Now suppose that $s R_{n} t$ and $t R_{n} u$. Then $s=t, t=u$ deduce that either $s=u$ or both s and u are n characters long and s and u begin with the same n characters. Consequently, $R n$ is transitive.
- It follows that $R n$ is an equivalence relation.

