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Introduction

 We often use relations to order some or all of the elements of sets. 

 words using the relation containing pairs of words (x, y), where x comes 

before y in the dictionary.

 schedule projects using the relation consisting of pairs (x, y), where x and y 

are tasks in a project such that x must be completed before y begins. 

 the set of integers using the relation containing the pairs (x, y), where x is 

less than y. 
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Definition of Partial Order  
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Example1

 Show that the “greater than or equal” relation (≥) is a partial ordering on the 

set of integers.

 Solution: Because a ≥ a for every integer a, ≥ is reflexive. 

 If a ≥ b and b ≥ a, then a = b. Hence, ≥ is antisymmetric.

 Finally, ≥ is transitive because a ≥ b and b ≥ c imply that a ≥ c.

 It follows that ≥ is a partial ordering on the set of integers and (Z, ≥) is a 

poset.
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Example 2

 The divisibility relation | is a partial ordering on the set of positive integers, 

because it is reflexive, antisymmetric, and transitive.We see that (Z+, |) is a

poset. Recall that (Z+ denotes the set of positive integers.)

 Solution: Because a | a whenever a is a positive integer, the “divides” 

relation is reflexive. 

 This relation is not symmetric because 1|2, but 2 |1. It is antisymmetric, for 

if a and b are positive integers with a |b and b |a, then a = b.

 Suppose that a divides b and b divides c. Then there are positive integers k 

and l such that b = ak and c = bl. Hence, c = a(kl), so a divides c. It follows 

that this relation is transitive.

 Therefore, divisibilty relation is a partial ordering on the set of positive 

integers. 
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Arbitrary Poset (Partial Ordering Set)

 In different posets different symbols such as ≤, ⊆, and |, are used for a 

partial ordering.

 However, we need a symbol that we can use when we discuss the ordering

relation in an arbitrary poset. Customarily, the notation is used to

denote that (a, b) ∈ R in an arbitrary poset (S,R). This notation is used

because the “less than or equal to” relation on the set of real numbers is the

most familiar example of a partial ordering and the symbol is similar to the ≤

symbol.
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Arbitrary Poset (cont.)

 When a and b are elements of the poset (S, ), it is not necessary that either

a b or b a. For instance, in (P (Z),⊆), {1, 2} is not related to {1, 3}, and

vice versa, because neither set is contained within the other. Similarly, in (Z+,

|), 2 is not related to 3 and 3 is not related to 2, because 2 | 3 and 3 | 2.
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Example

 In the poset (Z+ , |), are the integers 3 and 9 comparable? Are 5 and 7 

comparable?

 Solution: The integers 3 and 9 are comparable, because 3 | 9. The integers 5 

and 7 are incomparable, because 5  | 7 and 7  | 5.
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Total Ordering

 The adjective partial is used to describe partial orderings because pairs of

elements may be incomparable. When every two elements in the set are

comparable, the relation is called a total ordering.
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Examples

 The poset (Z,≤) is totally ordered, because a ≤ b or b ≤ a whenever a and b 

are integers.

 The poset (Z+, | ) is not totally ordered because it contains elements that are 

incomparable, such as 5 and 7.
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Lexicographic Order

 The words in a dictionary are listed in alphabetic, or lexicographic, order, 

which is based on the ordering of the letters in the alphabet. 

 Ordering of strings.
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Question

 Determine whether (3, 5) ≺ (4, 8), whether (3, 8) ≺ (4, 5), and whether

(4, 9) ≺ (4, 11) in the poset (Z × Z, ), where is the lexicographic ordering

constructed from the usual ≤ relation on Z.

 Solution: Because 3 < 4, it follows that (3, 5) ≺ (4, 8) and that (3, 8) ≺ (4, 5).

We have (4, 9) ≺ (4, 11), because the first entries of (4, 9) and (4, 11) are the

same but 9 < 11.
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Example

 Consider the set of strings of lowercase English letters:

 discreet ≺ discrete,

 because these strings differ first in the seventh position, and e ≺ t . Also,

 discreet ≺ discreetness,

 because the first eight letters agree, but the second string is longer. 

Furthermore,

 discrete ≺ discretion,

 because

discrete ≺ discreti.
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Hasse Diagram
 Many edges in the directed graph for a finite poset do not have to be shown 

because they must be present. 

 For instance, consider the directed graph for the partial ordering 

{(a, b) | a ≤ b} on the set {1, 2, 3, 4}, shown in Figure 1. 
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Figure 1 Constructing the Hasse Diagram for ({1, 2, 3, 4},≤).



Hasse Diagram (cont.)
 Because this relation is a partial ordering, it is reflexive, and its directed 

graph has loops at all vertices. Consequently, we do not have to show these 

loops because they must be present; in Figure 2 (b) loops are not shown. 

 Because a partial ordering is transitive, we do not have to show those edges 

that must be present because of transitivity in Figure 2(c).
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Figure 2: Constructing the Hasse Diagram for ({1, 2, 3, 4},≤).



Hasse Diagram (cont.)

 If we assume that all edges are pointed “upward” (as they are drawn in the 

figure), we do not have to show the directions of the edges; Figure 2(c) does

not show directions.
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Procedure to represent Hasse Diagram

 Start with the directed graph for this relation. Because a partial ordering is 

reflexive, a loop (a, a) is present at every vertex a. Remove these loops. 

 Next, remove all edges that must be in the partial ordering because of the 

presence of other edges and transitivity. That is, remove all edges (x, y) for

which there is an element z ∈ S such that x ≺ z and z ≺ x. 

 Finally, arrange each edge so that its initial vertex is below its terminal 

vertex. Remove all the arrows on the directed edges, because all edges point 

“upward” toward their terminal vertex.
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Question

 Draw the Hasse diagram representing the partial ordering {(a, b) |a divides b} 

on {1, 2, 3, 4, 6, 8, 12}.
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Solution

 Begin with the digraph for this partial order, as shown in Figure 3(a). 
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Figure 3(a) Constructing the Hasse Diagram of ({1, 2, 3, 4, 6, 8, 12}, |).



Solution (cont.)

 Remove all loops, as shown in Figure 3(b). 
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Figure 3(b) Constructing the Hasse Diagram of ({1, 2, 3, 4, 6, 8, 12}, |).



Solution (cont.)

 Then delete all the edges implied by the transitive property. These are (1, 4), 

(1, 6), (1, 8), (1, 12), (2, 8), (2, 12), and (3, 12). 

 Arrange all edges to point upward, and delete all arrows to obtain the Hasse

diagram.
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Figure 3(c) Constructing the Hasse Diagram of ({1, 2, 3, 4, 6, 8, 12}, |).



Solution (cont.)

 The resulting Hasse diagram is shown in Figure 3(c).
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Figure 3 Constructing the Hasse Diagram of ({1, 2, 3, 4, 6, 8, 12}, |).



Maximal and Minimal Elements

 An element of a poset is called maximal if it is not less than any element of 

the poset. That is, a is maximal in the poset (S, ) if there is no b ∈ S such 

that a ≺ b. 

 Similarly, an element of a poset is called minimal if it is not greater than any 

element of the poset. That is, a is minimal if there is no element b ∈ S such 

that b ≺ a. 

 Maximal and minimal elements are easy to spot using a Hasse diagram. They 

are the “top” and “bottom” elements in the diagram.

by Sibel T. Özyer, Spring 2019



Question1
 Which elements of the poset ({2, 4, 5, 10, 12, 20, 25}, |) are maximal, and 

which are minimal?

 Solution: The Hasse diagram in Figure 4 for this poset shows that the maximal 

elements are 12, 20, and 25, and the minimal elements are 2 and 5. As this 

example shows, a poset can have more than one maximal element and more 

than one minimal element.
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Figure 4 The Hasse Diagram of a poset



Question2
 Determine whether the posets represented by each of the Hasse diagrams in 

Figure 5 have a greatest element and a least element.

 Solution: The least element of the poset with Hasse diagram (a) is a. This 

poset has no greatest element. The Hasse diagram (b) has neither a least nor 

a greatest element. The Hasse diagram (c) has no least element. Its greatest 

element is d. The poset with Hasse diagram (d) has least element a and 

greatest element d.
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Figure 5 The Hasse Diagram of four posets



Upper and Lower Bounds

 Sometimes it is possible to find an element that is greater than or equal to all 

the elements in a subset A of a poset (S, ). If u is an element of S such that a 

u for all elements a ∈ A, then u is called an upper bound of A. 

 Likewise, there may be an element less than or equal to all the elements in 

A. If l is an element of S such that l a for all elements a ∈ A, then l is called 

a lower bound of A.
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Example

 Find the lower and upper bounds of the subsets 

{a, b, c}, {j, h}, and {a, c, d, f } in the poset with the Hasse diagram shown in 

Figure 6.
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Figure 6 The Hasse Diagram of a posets



Solution

 The upper bounds of {a, b, c} are e, f, j, and h, and its only lower bound is a.

 There are no upper bounds of {j, h}, and its lower bounds are a, b, c, d, e, 

and f .

 The upper bounds of {a, c, d, f } are f , h, and j , and its lower bound is a.

Figure 6 The Hasse Diagram of a posets



Least Upper and Greatest Lower Bounds

 The element x is called the least upper bound of the subset A if x is an upper 

bound that is less than every other upper bound of A. Because there is only 

one such element, if it exists, it makes sense to call this element the least 

upper bound. x is the least upper bound of A if a x whenever a ∈ A, and x z 

whenever z is an upper bound of A. 

 Similarly, the element y is called the greatest lower bound of A if y is a lower 

bound of A and z y whenever z is a lower bound of A.
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Question

 Find the greatest lower bound and the least upper bound of {b, d, g}, if they 

exist, in the poset shown in Figure 6.

 Solution: The upper bounds of {b, d, g} are g and h. Because g ≺ h, g is the

least upper bound.

The lower bounds of {b, d, g} are a and b. Because a ≺ b, b is the greatest 

lower bound.

by Sibel T. Özyer, Spring 2019



Lattices

 A partially ordered set in which every pair of elements has both a

least upper bound and a greatest lower bound is called a lattice.

Lattices have many special properties.

 Furthermore, lattices are used in many different applications such as

models of information flow and play an important role in Boolean

algebra.
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Question
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Determine whether the posets represented by each of the Hasse diagrams in 

Figure 7 are lattices.

Figure 7 The Hasse Diagram of three posets



Solution

 The posets represented by the Hasse diagrams in (a) and (c) are both lattices

because in each poset every pair of elements has both a least upper bound

and a greatest lower bound.

 The poset with the Hasse diagram in (b) is not a lattice, because the elements

b and c have no least upper bound. To see this, note that each of the

elements d, e, and f is an upper bound, but none of these three elements

precedes the other two with respect to the ordering of this poset.

by Sibel T. Özyer, Spring 2019


